CellMix FAQ and HowTos

Renaud Gaujoux
June 4, 2013

Abstract

This vignette contains hints and pointers on how to perform common tasks with the CellMix package. In particular, it will incorporate answers to user queries that would come up over time.

Contents

1 Marker lists

1.1 How to list all available marker gene lists?
1.2 How to load a registered marker gene list?
1.3 How to get a summary view of a marker gene list?
1.4 How to subset marker gene lists?
1.5 How to convert MarkerList objects into plain lists?
1.6 How to create MarkerList objects

2 Datasets

2.1 How to list all available datasets?
2.2 How to load a dataset?
2.3 How to retrieve data from an ExpressionMix object?

3 Deconvolution methods

3.1 How to list all available methods?

1 Marker lists

The CellMix package ships with a set of marker lists gathered from a variety of public databases. This section shows how to perform some common task with these gene lists.

1.1 How to list all available marker gene lists?

```r
# list access keys
cellMarkers()
```

```r
# [1] "IRIS"  "Abbas"  "TDB_HS"  "TDB_RN"  "Palmer"  "HaemAtlas"
# [7] "TIGER"  "VeryGene"  "Grigoryev"
```

```r
# show full property table
cellMarkersInfo()
```

1.2 How to load a registered marker gene list?

```r
```
load HaemAtlas markers
m <- cellMarkers("HaemAtlas")
or
m <- MarkerList("HaemAtlas")

1.3 How to get a summary view of a marker gene list?

load
m <- MarkerList("HaemAtlas")
show summary
summary(m)

<object of class MarkerList>
Types: 8 ['B-CD19', 'Erythroblast', ... , 'T-CD8']
Mode: character
Markers: 2069
IDtype: .Illumina ['ILMN_1793637', 'ILMN_1663575', ... , 'ILMN_1815673']
Source: illuminaHumanv2.db
Breakdown:
B-CD19 Erythroblast Granulocyte-CD66b Megakaryocyte
247 322 878 279
Monocyte-CD14 NK-CD56 T-CD4 T-CD8
205 82 51 5

plot number of markers for each cell type
barplot(m)

1.4 How to subset marker gene lists?
subset the cell types
summary(m[1:3])

<object of class MarkerList>
Types: 3 ['B-CD19', 'Erythroblast', 'Granulocyte-CD66b']
Mode: character
Markers: 1447
IDtype: .Illumina ['ILMN_1793637', 'ILMN_1663575', ..., 'ILMN_1857413']
Source: illuminaHumanv2.db
Breakdown:
B-CD19 Erythroblast Granulocyte-CD66b
247 322 878

Take only first n markers of each cell type
summary(m[, 1:3])

<object of class MarkerList>
Types: 8 ['B-CD19', 'Erythroblast', ..., 'T-CD8']
Mode: character
Markers: 24
IDtype: .Illumina ['ILMN_1793637', 'ILMN_1663575', ..., 'ILMN_1726589']
Source: illuminaHumanv2.db
Breakdown:
B-CD19 Erythroblast Granulocyte-CD66b Megakaryocyte
3 3 3 3
Monocyte-CD14 NK-CD56 T-CD4 T-CD8
3 3 3 3

subset markers that are present in some dataset => this converts/maps IDs if necessary
x <- ExpressionMix("GSE11058")
subset(m, x, verbose = TRUE)

Converting 2069 markers from Annotation (illuminaHumanv2.db) to Annotation (hgu133plus2.db) ... OK [1720/2069 (1:1)]
Processing 2069 markers from Annotation (illuminaHumanv2.db) to Annotation (hgu133plus2.db) ... OK [1643/2069 (1:1)]
Matching character marker list against 54675 strings ['1007_s_at', '1053_s_at', ..., 'AFFX-TrpnX-M_at'] ...
OK [1643/1643 match(e(s)]

<object of class MarkerList>
Types: B-CD19, Erythroblast, ..., T-CD8 (total: 8)
Mode: character
setName: HaemAtlas
geneIds: 206513_at, 207655_s_at, ..., 221126_at (total: 1643)
geneIdType: Annotation (hgu133plus2.db)
collectionType: Null
geneValues: NA
details: use 'details(object)'

3
1.5 How to convert MarkerList objects into plain lists?

MarkerList objects can be converted to plain list objects using the methods `geneIds`, or `geneValues` if one wants to keep numeric scores associated with each marker:

```r
# load marker list that contains scores
ml <- cellMarkers("TIGER")

# plain list dropping values
l <- geneIds(ml)
str(head(l))
## List of 6
## $ bladder : chr [1:199] "Hs.405866" "Hs.281295" "Hs.534503" "Hs.549507" ...
## $ blood : chr [1:413] "Hs.552036" "Hs.557039" "Hs.23118" "Hs.448401" ...
## $ bone : chr [1:114] "Hs.518726" "Hs.2936" "Hs.1584" "Hs.98785" ...
## $ bone_marrow: chr [1:269] "Hs.474119" "Hs.458263" "Hs.289232" "Hs.209929" ...
## $ brain : chr [1:342] "Hs.7124" "Hs.12440" "Hs.13284" "Hs.20945" ...
## $ cervix : chr [1:216] "Hs.343864" "Hs.74082" "Hs.256632" "Hs.528920" ...
```

1.6 How to create MarkerList objects

MarkerList objects can be manually created from a variety of format/object types, using the factory generic MarkerList():

```r
# basic data
m <- setNames(letters[1:10], rep(c("CT1", "CT2"), 5))
m
## CT1 CT2 CT1 CT2 CT1 CT2 CT1 CT2 CT1 CT2
## "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

# from character vector with names corresponding to cell types
ml <- MarkerList(m)
geneIds(ml)
```
from a list
m_list <- split(m, names(m))
ml <- MarkerList(m_list)
geneIds(ml)

from a delimited text file: marker names, cell type
mf <- cbind(m, names(m))
write.table(mf, file = "markers.txt", row.names = FALSE)
ml <- MarkerList(file = "markers.txt", header = TRUE)
geneIds(ml)

$CT1
[1] "a" "c" "e" "g" "i"
$CT2
[1] "b" "d" "f" "h" "j"

2 Datasets

The CellMix package ships a with a set of pre-processing pipelines for some public datasets on GEO, that can be used as benchmark data for gene expression deconvolution methods.
2.1 How to list all available datasets?

```r
# list access keys
gedData()
```

```
[[1]]  "GSE29832"  "GSE24223"  "GSE19830"  "GSE20300"  "GSE5350"
[[6]]  "GSE11057"  "GSE11058"  "GSE22886_A"  "GSE22886_B"  "GSE33076"
[[11]] "GSE3649"  "E-TABM-633"  "GSE24759"
```

```r
# show full property table
gedDataInfo()
```

2.2 How to load a dataset?

Datasets are loaded using the function `ExpressionMix`. This requires an internet connection. The first call will create a data directory in the user home directory, where all files related to datasets will be stored (GSE matrix files, GPL files, cache files, etc.).

```r
# load GSE29832 from Gong et al. (2011)
mix <- ExpressionMix("GSE29832")
mix
```

```
## ExpressionMix (storageMode: lockedEnvironment)
## assayData: 54675 features, 15 samples
## element names: exprs
## protocolData: none
## phenoData
## sampleNames: GSM739214 GSM739215 ... GSM739228 (15 total)
## varLabels: title geo_accession ... Biorep (36 total)
## varMetadata: labelDescription
## featureData
## featureNames: 1007_s_at 1053_at ... AFFX-TrpnX-M_at (54675 total)
## fvarLabels: ID GB_ACC ... Gene Ontology Molecular Function (16 total)
## fvarMetadata: Column Description labelDescription
## experimentData: use 'experimentData(object)'
## Annotation: hgu133plus2.db
## Composition: 'Blood', 'Breast' (2 total)
```

2.3 How to retrieve data from an ExpressionMix object?

`ExpressionMix` objects are containers for multiple types of data, which can be retrieved with dedicated methods. The idea is to hold both gene expression and cell composition data in a single object, facilitating common dataset operations (e.g. subsetting features or samples).

```r
# dimensions of an ExpressionMix object
dim(mix)
```

```
##  Features  Samples  Components
##    54675     15        2
```
Expression data: it is stored as an `ExpressionSet` object and is accessible via `eset` or `exprs`, if only the expression matrix is needed:

```r
class(eset(mix))
## [1] "ExpressionSet"
## attr(,"package")
## [1] "Biobase"

class(exprs(mix))
## [1] "matrix"

dim(exprs(mix))
## [1] 54675 15
```

Cell proportions: if available, they are stored in the mixture coefficient matrix of the embedded NMF model and are accessible with the method `coef`:

```r
dim(coef(mix))
## [1] 2 15
```

Cell-specific signatures if available, they are stored in the basis matrix of the embedded NMF model and are accessible with the method `basis`:

```r
dim(basis(mix))
## [1] 54675 2
```

3 Deconvolution methods

3.1 How to list all available methods?

```r
# list access keys
gedAlgorithm()
## [1] "lsfit"  "cs-lsfit"  "qprog"  "cs-qprog"  "DSA"
## [6] "csSAM"  "DSection"  "ssKL"  "ssFrobenius" "meanProfile"

# show full property table
gedAlgorithmInfo()
```