# select markers for the tissues present in the mixture
basisnames(x)
[1] "Brain" "Liver" "Lung"
ml <- ml[c('brain', 'liver', 'lung')]
summary(ml)
# convert to match annotations
mlx <- convertIDs(ml, mix, verbose=TRUE)
# Converting 868 markers from Unigene (org.Hs.eg.db) to Annotation (rat2302.db) ... OK [261/868 (1:1)]
# Processing 868 markers from Unigene (org.Hs.eg.db) to Annotation (rat2302.db) ... OK [261/868 (1:1)]
summary(mlx)
# QC on markers from their expression patterns in mixed samples
profplot(mlx[,1:10], mix)
Warning message:
'x' is NULL so the result will be NULLWarning message:
'x' is NULL so the result will be NULLWarning message:
'x' is NULL so the result will be NULL
# filter out poor markers using SCOREM (based on linear-scale expression)
Warning message:
'x' is NULL so the result will be NULLWarning message:
'x' is NULL so the result will be NULLWarning message:
'x' is NULL so the result will be NULL
# apply DSA using all markers
res <- ged(mix[mlsc,], mlsc, 'DSA', verbose=TRUE)
Using ged algorithm: “DSA”
Estimating basis and mixture coefficients matrices from marker features [DSA]
Using 113/113 markers to estimate cell proportions:
brain liver lung
17 81 15
Checking data scale ... NOTE [log]
Converting data to linear scale ... OK [base: 2]
Computing proportions using DSA method ... OK
Estimating basis matrix from mixture coefficients [qprog]
Not using any marker constraints
Timing:
user system elapsed
1.808 0.024 1.837
GED final wrap up ... OK