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Abstract

Gene expression experiments are commonly performed using samples that are composed
of a variety of cell types, each contributing to the global gene expression measurements in
different proportions. The CellMix package defines a general framework for gene expression
deconvolution that integrates several of the currently available deconvolution algorithms, and
facilitates the estimation of cell type proportions and/or cell-specific differential expression in
gene expression experiments.

The package was designed to handle common data settings using a unified interface, and to
help in dealing with specific issues such as cross-platform/species identifier conversions. This
vignette illustrates some of the package’s key functionalities on practical sample analyses.
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1 Setting up the CellMix package

Until the package is released on CRAN (R Development Core Team 2011) or BioConductor
(Gentleman et al. 2004), the CellMix package can be installed from our CRAN-like repository,
using standard package installation commands:

# install biocLite if not already there

if (!require(BiocInstaller)) {
# enable Bioconductor repositories -> add Bioc-software

setRepositories()

install.packages("BiocInstaller")

library(BiocInstaller)

}
# or alternatively do: source(✬http://www.bioconductor.org/biocLite.R✬)

# install (NB: might ask you to update some of your packages)

biocLite("CellMix", siteRepos = "http://web.cbio.uct.ac.za/~renaud/CRAN")

# load

library(CellMix)

Note that to reproduce some of the examples in this vignettes, you will also need to have the
GEOquery package1 package installed as well as some Bioconductor annotation packages which
will be installed when needed2:

biocLite("GEOquery")

2 Background and objectives

Gene expression experiments typically assess heterogeneous samples in a single experiement,
measuring global gene expression levels. From a biological point of view, however, different cell
populations are fundamental units, for which specific gene expression profiles, and, in some cases,
proportions can provide more detailed and meaningful insights about the underlying processes.

Gene expression deconvolution methodologies have been developed by several authors in order
to answer the following questions, using global gene expression data, possibly in combination with
some other data such as known signatures or marker genes:

❼ cell proportions: what is the proportion of each cell type?

❼ are there differences in proportion that are associated with some disease status/covariate?

❼ cell-specific expression: what is the expression profile of each cell type?

❼ which genes are differently expressed in each cell types between groups of samples?

In terms of data requirement, most approaches fall into one of the three categories illustrated
in Figure 1.

Gene expression deconvolution is naturally expressed as matrix decomposition problem. This
is why we use the theoretical framework of Nonnegative Matrix Factorization (Lee et al. 1999;
Paatero et al. 1994), for which we use theNMF package3 (Gaujoux et al. 2010), because it provides
a flexible interface to simultaneously handle both celll-specific signatures and proportion data, as
well as a comprehensive set of features to run NMF(-like) algorithms.

1http://www.bioconductor.org/packages/release/bioc/html/GEOquery.html
2In an interactive R session, their installation is automated, after the user gives permission to do so.
3http://cran.r-project.org/package=NMF
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(a) Partial from available signatures (b) Partial from available proportions (c) Complete from global expression

Graphic (b) was extracted from Shen-Orr et al. (2010), and modified to produce the other panels.

Figure 1: Partial vs. Complete gene expression deconvolution.
Partial deconvolution methods assume that either signatures (a) or proportions (b) are available and use
them to infer the unknown proportions and signatures respectively. Complete deconvolution methods (c)
infer both cell-type signatures and proportions from the global gene expression data, possibly using extra
data such as marker genes to guide or seed the estimation.

3 Estimating cell proportions from known signatures

Consider some gene expression data, obtained from heterogeneous samples, i.e. in which the
cell type proportions are expected to vary across samples. Laboratory techniques exist to measure
these proportions, e.g., FACS, however, these measurments are not always performed, or are
limited in terms of which cell types can be measured. Some computational methods use known
cell-specific expression profiles/signatures to estimate their respective cell proportions in a mixture,
given its global gene expression data.

3.1 Blood samples

Some deconvolution methdologies have been developed specifically for blood samples, which
are arguably the most common type of samples for which gene expression is assessed. The CellMix
package provides an easy interface to apply deconvolution methods that use known cell-specific
expression signatures, e.g., generated in independent studies (Abbas et al. 2009; Gong et al. 2011).

For the purpose of this tutorial we will use the dataset GSE203004 on acute kidney transplant
rejection (ACR) from Shen-Orr et al. (2010), for which Complete Blood Count (CBC) data are
available. The CellMix package stores a pre-processing pipeline for this dataset, which extracts
all relevant data from otherwise composite and unfriendly sample annotation data. The dataset is
loaded using the function ExpressionMix, which requires an internet connection on first execution,
when the actual data are retrieved from the Gene Expression Omnibus (GEO) database56 (Barrett
et al. 2010). Subsequent calls use a locally cached version of the data and are much faster as shown
below.

# load data (normally requires an internet connection to GEO)

acr <- ExpressionMix("GSE20300", verbose = 2)

## Loading dataset ✬GSE20300✬ ...

## Loading expression data GSE20300 from cache file ✬/home/renaud/R-data/CellMix/GSE20300.rds✬ OK

4http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20300
5http://www.ncbi.nlm.nih.gov/geo/
6CellMix includes special functions that make GEOquery works even behind CNTLM proxies, e.g., your uni-

versity proxy.
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## Checking data type ... OK [ExpressionSet]

## Adding covariate(s): CEL, SampleID, Group, Neutrophils, Lymphocytes, Monocytes, Eosinophils,

## Basophils, Status, Type

##

## Loading basis signatures ... NONE [0 x 5]

## Loading proportions ... OK [5 x 24]

## Warpping into an ExpressionMix object ... OK

## OK

# the result is a combination of an ExpressionSet and an NMF model object

acr

## ExpressionMix (storageMode: lockedEnvironment)

## assayData: 54675 features, 24 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: GSM508883 GSM508884 ... GSM508906 (24 total)

## varLabels: title geo_accession ... Type (39 total)

## varMetadata: labelDescription

## featureData

## featureNames: 1007_s_at 1053_at ... AFFX-TrpnX-M_at (54675

## total)

## fvarLabels: ID GB_ACC ... Gene Ontology Molecular Function (16

## total)

## fvarMetadata: Column Description labelDescription

## experimentData: use ✬experimentData(object)✬

## Annotation: hgu133plus2.db

## Composition: ✬Neutrophils✬, ✬Lymphocytes✬, ..., ✬Basophils✬ (5 total)

Abbas et al. (2009) defined a set of cell-specifc signature for 17 immune cell types in a variety of
states (e.g., activated or resting). Although these signatures were defined on Affymetrix HGU133A
and HGU133B chips, they can theoretically be used on data generated on other platforms. This,
however, potentially requires to map the original Affymetrix probe ids to corresponding probes
on the other platform. One might also have concerns about how well correlated gene expression
measures are between different platforms.

The function gedBlood enables to apply in a single call a pre-processing pipeline, which deals
with such issues. We use argument verbose=TRUE to show some details about the pipeline work-
flow7:

# estimate proportions using signatures from Abbas et al. (2009)

res <- gedBlood(acr, verbose = TRUE)

## Loading basis signature from Abbas et al. (2009) ... OK [359 features x 17 cell types]

## Estimating proportions for blood cell subset(s): WBMapping signature ids onto target ids (method: auto) ...

## Limit/reorder to common set of features ... OK [359 features x 17 cell types]

## Checking data dimension compatibility ... OK [359 features x 17 cell types]

## Using cell type signatures: ✬Th✬, ✬Th act✬, ..., ✬neutro✬ [17 total]

## Checking log-scale ... data:YES - signatures:NO

## Applying log-transform to signatures (base 2) ... OK

## Normalizing signatures and target together (method: quantiles) ... OK

## Using ged algorithm: "lsfit"

## Estimating cell proportions from cell-specific signatures [lsfit: ls]

## Timing:

## user system elapsed

7More details can be displayed with verbose=2, verbose=3, etc..
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## 1.408 0.012 1.423

## GED final wrap up ... OK

The result is stored in an NMF object that contains both the known basis signatures, and the
estimated proportions in the coefficient matrix, which can be retrieve using the method basis and
coef:

# result object

res

## <Object of class: NMFfit>

## # Model:

## <Object of class:NMFstd>

## features: 359

## basis/rank: 17

## samples: 24

## # Details:

## algorithm: lsfit

## seed: none

## RNG: 403L, 1L, ..., 400063242L [7dd631a5171ed251073c9514852d531e]

## distance metric: ✬euclidean✬

## miscellaneous: <mlm>, <lm> . (use ✬misc(object)✬)

## Timing:

## user system elapsed

## 0.724 0.000 0.726

# proportions are stored in the coefficient matrix

dim(coef(res))

## [1] 17 24

coef(res)[1:3, 1:4]

## GSM508883 GSM508884 GSM508885 GSM508886

## Th 0.0000 0.00000 0.01441 0.000000

## Th act 0.0000 0.00000 0.00000 0.000000

## Tc 0.1118 0.06609 0.05258 0.001821

# cell type names

basisnames(res)

## [1] "Th" "Th act" "Tc" "Tc act" "B" "B act"

## [7] "B aIgM" "Mem IgG" "Mem IgM" "PC" "NK" "NK act"

## [13] "mono" "mono act" "DC" "DC act" "neutro"

# basis signatures (with converted IDs)

basis(res)[1:5, 1:3]

## Th Th act Tc

## 242904_x_at 11.979 4.150 5.438

## 232165_at 6.740 3.683 3.390

## 201369_s_at 11.819 6.854 8.168

## 233127_at 9.335 5.124 4.999

## 204621_s_at 9.183 5.220 3.403

The proportions can be aggregated into CBC data using the function asCBC and, in this case,
compared to the known proportions. Since the dataset contains a case/control group variable,
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Status for kidney transplant output, one can also highlight proportion differences between the
two group of samples with the dedicated function boxplotBy:

# aggregate into CBC

cbc <- asCBC(res)

dim(cbc)

## [1] 359 24 3

basisnames(cbc)

## [1] "Lymphocytes" "Neutrophils" "Monocytes"

# plot against actual CBC

profplot(acr, cbc)

# plot cell proportion differences between groups

boxplotBy(res, acr$Status, main = "Cell proportions vs Transplant status")
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3.2 Other tissues with known signatures

For other tissue types where a set of cell-specific signatures is available, the same analysis
pipeline can be applied using the function gedProportions. For example, the dataset GSE198308

contains data from a controlled mixture experiment on Rat samples (Shen-Orr et al. 2010), where
both the expression profiles from pure tissues (brain, liver and lung), as well as cell proportions
from controlled mixtures are known. A data pre-processing pipline is also available in CellMix ’s
dataset registry, meaning that it can easily be loaded, as in the previous example. In particular,
once the data is loaded, the average pure expression profiles, i.e. the cell-specific signature, are
stored in the associated basis matrix, and can be retreived with the function basis, while the
data restricted to all mixed and pure samples can be extracted via the functions mixedSamples
and pureSamples respectively:

# load data (requires internet connection to GEO)

gse <- ExpressionMix("GSE19830", verbose = TRUE)

## Loading dataset ✬GSE19830✬ ... OK

8http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19830
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gse

## ExpressionMix (storageMode: lockedEnvironment)

## assayData: 31099 features, 42 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: GSM495209 GSM495210 ... GSM495250 (42 total)

## varLabels: title geo_accession ... Type (35 total)

## varMetadata: labelDescription

## featureData

## featureNames: 1367452_at 1367453_at ... AFFX_ratb2/X14115_at

## (31099 total)

## fvarLabels: ID GB_ACC ... Gene Ontology Molecular Function (16

## total)

## fvarMetadata: Column Description labelDescription

## experimentData: use ✬experimentData(object)✬

## Annotation: rat2302.db

## Composition: ✬Brain✬, ✬Liver✬, ✬Lung✬ (3 total)

# extract data for mixed samples only

mix <- mixedSamples(gse)

# extract stored known signatures (= average pure profiles)

sig <- basis(mix)

The same analysis pipeline used for blood samples can then be applied through the main
interface function ged, provided that one also passes along the pure cell-specific signature matrix.
In this example, the basis signatures in sig are those computed from the sorted cell samples
themsleves as their average expression profile within each cell type. In practice, however, they
could have been generated in an independent study. Moreover, no normalization is performed
by default and we force the deconvolution to be performed in linear space (i.e. using non log-
transformed expression values) by setting argument log=FALSE, since both the global expression
and signature data come from the same dataset, and should not suffer from normalization or
transformation discrepancies:

# estimate proportions from pure signatures (default: no normalization)

res <- ged(mix, sig, verbose = TRUE, log = FALSE)

## Mapping signature ids onto target ids (method: auto) ... SKIP [signatures have no annotations]

## Limit/reorder to common set of features ... OK [31099 features x 3 cell types]

## Checking data dimension compatibility ... OK [31099 features x 3 cell types]

## Using cell type signatures: ✬Brain✬, ✬Liver✬, ✬Lung✬ [3 total]

## Checking log-scale ... data:YES - signatures:YES

## Reverting log-transform on signatures (base 2) ... OK

## Reverting log-transform on data (base 2) ... OK

## Normalizing signatures and target together (method: none) ... SKIP

## Using ged algorithm: "lsfit"

## Estimating cell proportions from cell-specific signatures [lsfit: ls]

## Timing:

## user system elapsed

## 4.200 0.304 4.515

## GED final wrap up ... OK

# plot against known proportions

profplot(mix, res)
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We notice that the estimates are separately very well correlated with the true proportions, but
show some bias. This is fine if the proportions are not of interests, but are subsequently used to
correct for proportion heterogeneity in the estimation of cell-specific differential expression. Indeed,
estimates with high correlations will accurately reflect the variations in the true proportions, which
is what eventually matters when estimating the effect of proportions on gene expression levels, at
least using standard regression-like approaches.

However, more care is required if accurate proportion estimates are desired. Indeed, sets
of complete expression profiles from pure samples generally need to be filtered to increase the
deconvolution accuracy, and remove the bias due to noise or genes that are expressed across
all/multiple cell types, whose expression is not expected to reflect cell proportions.

3.3 Building/filtering basis signatures

Abbas et al. (2009) proposed to select genes based on their cell type specificity, and build a basis
signature matrix that provides the “maximum” deconvolution power, which the authors showed
correlates well with its condition number. The main idea is to do so is to limit the signatures to a
set of genes that discriminate well between cell types, and together constitute a basis matrix that
is well conditonned. This also has the advantage of reducing the number of measurements needed
to perform the deconvolution.

3.3.1 Extracting marker p-values

The first filtering step consists in computing p-values associated with cell type specificty. It is
briefly described as follows in Abbas et al. (ibid.):

[...] top differentially expressed (based on 95 change confidence intervals from Student’s
T-test) probesets were determined by comparing each probe’s highest-expressed group
with the next highest-expressed group in order to find probesets that are good markers
for each cell population. This step was repeated with comparison between the top
group and the third-highest group in order to also include probesets that were strong
markers for two cell populations.

From Abbas et al. (ibid.)
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The CellMix package implements this step in the interface function extractMarkers, but by
default only compares the top and second most expressing groups9:

# extract data for pure samples only

pure <- pureSamples(gse)

# compute p-values for all probes

ml <- extractMarkers(pure, pure$Type, method = "Abbas")

# all probes get attributed a cell-type and a p-value

summary(ml)

## <object of class MarkerList>

## Types: 3 [✬Brain✬, ✬Liver✬, ✬Lung✬]

## Mode: numeric

## Markers: 31099

## IDtype: .Affymetrix [✬1387772_at✬, ✬1391092_at✬, ..., ✬1397229_at✬]

## Values: [5.84863829573202e-11, 5.63037162881734e-10, ..., 0.99972310651136]

## Source: rat2302.db

## Breakdown:

## Brain Liver Lung

## 9104 12902 9093

3.3.2 Filtering on p-value

One can estimate proportions only using markers with a p-value under a given threshold. This
is facilitated by the rich interface of the S4 class MarkerList, which enables marker lists to be
filtered in many different ways:

# Filtering 1: show p-values histogram

hist(ml, breaks = 20)

summary(ml <= 10^-8)

## <object of class MarkerList>

## Types: 3 [✬Brain✬, ✬Liver✬, ✬Lung✬]

## Mode: logical

## Markers: 31099

## IDtype: .Affymetrix [✬1387772_at✬, ✬1391092_at✬, ..., ✬1382072_at✬]

## Source: rat2302.db

## Breakdown (showing selected only):

## Brain Liver Lung

## 17 38 14

# refit proportions using only the subset of markers with p-value <= 10^-8

res2 <- ged(mix, basis(gse), subset = ml <= 10^-8, log = FALSE)

# plot against known proportions

profplot(mix, res2)

9This can be changed setting argument ntop > 2, if some of the cell types are expected to be similar
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α = 0.93 |  ρ = 0.98 |  R2 = 0.96 +/− 0.02

3.3.3 The condition number criterion

Abbas et al. (2009) suggested to further reduce the number of markers, by choosing the set for
which the basis matrix’s condition number is minimun, which aims at increasing the robustness
and scale consistency of the basis signatures. This can be achieved using the function screeplot:

# Filtering 2: select limited number of markers based on the signature

# matrix✬s condition number as proposed by Abbas et al. (2009)

sel <- screeplot(ml, basis(gse), range = 1:500)

summary(sel)

## <object of class MarkerList>

## Types: 3 [✬Brain✬, ✬Liver✬, ✬Lung✬]

## Mode: numeric

## Markers: 14

## IDtype: .Affymetrix [✬1387772_at✬, ✬1391092_at✬, ..., ✬1388033_at✬]

## Values: [5.84863829573202e-11, 5.63037162881734e-10, ..., 2.13771098034808e-09]

## Source: rat2302.db

## Breakdown:

## Brain Liver Lung

## 5 5 4

# refit proportions using the optimised set of markers

res3 <- ged(mix, basis(gse), subset = sel, log = FALSE)

# plot against known proportions

profplot(mix, res3)
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3.4 From marker genes only

In the situation where no pure sample expression profile is available, deconvolution and esti-
mation of cell type proportions can be still be performed, using sets of marker genes, i.e. genes
that are know or at least expected to be expressed by only one of the cell types present in the
mixture.

For example, supposing the markers we selected above were a priori known marker genes,
for the cell types that compose the samples. A simple approach consists in using their mean
expression profile, computed within their respective cell type, as implemented in the ged algorithm
’meanProfile’. This is part of the approach used by Kuhn et al. (2011), who used these average
profiles as proxies for the proportions, and plugged them into a linear regression framework to
detect cell-specific differential expression. See Section 5 for how to apply an alternative approach,
based on a semi-supervised NMF algorithm.

In this context, very recent work from Zhong et al. (2013) suggests that deconvolution of gene
expression data should be conducted in linear space, rather than on log-transformed expression
values, which are usually used in more classical analyses. They proposed a more sophisticated
computation of the proportions – and cell-specific signatures – from average marker expression
profiles in mixed samples, which they named Digital Sorting Algorithm, which is implemented
in the ged algorithm ’DSA’. The following sample code illustrates the difference in proportion
estimates, when computed using plain average expression of markers and DSA, either in linear
or log-space. Note that, in this particular example, because we are interested in the proportions
only, we can speed up the DSA estimation by limiting the target expression matrix to the selected
marker genes (target = mix[sel]).

# check if data is in log scale

is_logscale(mix)

## [1] TRUE

# compute mean expression profiles within each cell type

p <- ged(expb(mix, 2), sel, "meanProfile")

# plot against known proportions (p is by default not scaled)

profplot(mix, p, scale = TRUE, main = "meanProfile - Linear scale")

# compute mean expression profiles within each cell type

11



lp <- ged(mix, sel, "meanProfile")

# plot against known proportions (p is by default not scaled)

profplot(mix, lp, scale = TRUE, main = "meanProfile - Log scale")

# compute proportions using DSA methods [Zhong et al. (2013)]

pdsa <- ged(mix[sel], sel, "DSA", verbose = TRUE)

## Using ged algorithm: "DSA"

## Note: method with signature ’MatrixData#MarkerList#ANY’ chosen for function ’nmf’,

## target signature ’ExpressionMix#MarkerList#character’.

## "ExpressionSet#ANY#ANY" would also be valid

## Estimating basis and mixture coefficients matrices from marker features [DSA]

## Using 14/14 markers to estimate cell proportions:

## Brain Liver Lung

## 5 5 4

## Checking data scale ... NOTE [log]

## Converting data to linear scale ... OK [base: 2]

## Computing proportions using DSA method ... OK

## Estimating basis matrix from mixture coefficients [qprog]

## Not using any marker constraints

## Timing:

## user system elapsed

## 1.016 0.020 1.038

## GED final wrap up ... OK

profplot(mix, pdsa, main = "DSA - Linear scale")

pdsa <- ged(mix[sel], sel, "DSA", log = FALSE)

profplot(mix, pdsa, main = "DSA - Log scale")
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4 Estimating differential cell-specific expression

One is generally eventually interested in estimating cell-specific expression, and, in particular,
detecting genes that are differentially expressed between two groups of samples. Being able to
perform such analysis at the cell type level facilitates interpretation, i.e. the traduction of a list
of genes into meaningfull biological hypotheses.

4.1 From measured proportions: csSAM

The csSAM algorithm (Shen-Orr et al. 2010) defines an extension of the popular SAM al-
gorithm (Tusher et al. 2001), which estimates differential expression between cell types. This
algorithm is implemented in the csSAM package10 (Shen-Orr et al. 2013). The CellMix package
provides access to this method within its comprehensive framework. In particular, some csSAM ’s
utility functions have been rewritten in C++, which results in a large performance gain. We
illustrate its use on the ACR dataset, reproducing the analysis from the original csSAM paper:

# take the 5000 most variable genes

s <- esApply(acr, 1L, sd, na.rm = TRUE)

i <- order(s, decreasing = TRUE)[1:5000]

# fit csSAM for the groups defined in covariate ✬Status✬

rescs <- ged(acr[i, ], coef(acr), method = "csSAM", data = acr$Status, nperms = 200,

verbose = TRUE)

## Using ged algorithm: "csSAM"

## Groups: Stable=9L | Acute Rejection=15L

## Fitting cell-specific linear model ... OK

## Computing csSAM model statistics ... OK

## Computing fdr using 200 permutations ...

## Alternative ✬two.sided✬ ... OK

## Alternative ✬greater✬ ... OK

## Alternative ✬less✬ ... OK

## OK

## Timing:

## user system elapsed

10http://cran.r-project.org/package=csSAM
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## 74.15 5.94 80.15

## GED final wrap up ... OK

The result may be plotted using the function csplot, which plots the number of genes that
have a false discovery rate below a given threshold, within each cell type separately. This function
is generic and may be called for any result from the ged function, as long as the deconvolution
algorithm is suitable for such computation.

csplot(rescs)
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4.2 From proportion priors: DSection

Another algorithm, similar to csSAM in its input and output, is the DSection algorithm.
This algorithm is a Monte-Carlo-Markov-Chain (MCMC) approach, which models uncertainity
in the proportions measurments, considering them as Bayesian priors, and computes posterior
probabilities and estimates for cell type-specific signatures and proportions (Erkkila et al. 2010).
It can perform the deconvolution in multiple groups of samples, possibly more than two. We
illustrate its use on a small simulated dataset, as it is very computationally intensive: for large
datasets, one would need several hundreds/thousands of sampling, as well as a burnin period, to
ensure the convergence of the Markov chain. Note that DSection is expected to perform very well
on such simulated toy data, because they are generated using noise assumptions that are close to
its underlying statistical model11.

# generate random data: 3 cell types, 20 samples, 100 genes and 5 markers

# per cell type

x <- rmix(3, 100, 20, markers = 5)

x

# show true basis signatures (the markers clearly appear)

basismap(x, Rowv = NA)

# add noise to the proportions

11The DSection algorithm requires the Octave statistics package to be installed (more specifically the func-
tion gamfit). Unfortunately, some very recent changes in either R or Octave, prevent RcppOctave from running
DSection’s Matlab code (due to some error linked with Octave io package). This algorithm is therefore temporary
unavailable.
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p0 <- abs(coef(x) + rmatrix(coef(x), dist = rnorm, sd = 0.2))

# rescale into proportion (columns sum up to one)

p0 <- scoef(p0)

# see how noisy they got

profplot(x, p0)

# fit DSection MCMC model

ds <- ged(x, p0, "DSection", maxIter = 20, verbose = TRUE)

# check reduction of noise on proportions

profplot(x, ds)

5 Complete deconvolution using marker genes

5.1 A priori: enforce marker expression patterns

In previous work, we proposed a simple strategy to modify some common NMF algorithms,
in order to improve the estimation of cell-specific signatures, by enforcing the expected expres-
sion pattern of known marker genes (Gaujoux et al. 2011). The strategy was shown to greatly
improve the ability of those algorithms to extract meaningful signatures. The algorithms ’ssKL’,
’ssFrobenius’ implement this strategy, for the Kullback-Leibler divergence and the euclidean
distance respectively. We illustrate their use on a sythetic dataset.

# generate random data with 5 markers per cell type

x <- rmix(3, 200, 20, markers = 5)

m <- getMarkers(x)

# deconvolve using KL-divergence metric

kl <- ged(x, m, "ssKL", log = FALSE, rng = 1234, nrun = 10)

# plot against known proportions

profplot(x, kl)

# check consistency of most expressing cell types in known basis

# signatures

basismarkermap(basis(x), kl)

# correlation with known signatures

basiscor(x, kl)

## CL_1 CL_2 CL_3

## CL_1 0.960457 -0.002233 -0.148987

## CL_2 -0.005948 0.969020 -0.001466

## CL_3 -0.141878 0.003117 0.958905
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Note that experiments showed, however, that enforcing markers could introduce a bias in the
proportion estimates – which can be seen on the scatterplot above. Further investigation would
be required in order to design a strategy that enforces markers without introducing such bias.

5.2 A posteriori: assign signatures to cell types

Another NMF based method that uses marker genes is the deconf algorithm (Repsilber et al.
2010). This algorithm use markers a posteriori, to assign the estimated signatures each cell type.
Its original implementation is very slow. The CellMix package implements a faster version of this
algorithm, which uses the fast combinatorial nonnegative least-squares algorithm (FCNNLS) from
Van Benthem et al. (2004), as provided by the NMF package package. Similarly to DSection, the
algorithm is expected to perform very well on the toy simulated data.

# deconvolve using KL divergence metric

dec <- ged(x, m, "deconf", rng = 1234, nrun = 10)

# plot against known proportions

profplot(x, dec)

# check consistency of most expressing cell types in known signatures

basismarkermap(basis(x), dec)

# correlation with known signatures

basiscor(x, dec)

## CL_1 CL_2 CL_3

## CL_1 0.99498 0.04757 -0.01447

## CL_2 0.17362 0.99742 0.08444

## CL_3 -0.07258 0.13663 0.99891
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6 Conclusion

The CellMix package provides a comprehensive framework for researchers working with gene
expression deconvolution, whether to apply algorithms or develop new methods. Its objective is
to gather in one place as many relevant components as possible, so as to facilitate gene expression
deconvolution, and extract as much as possible from gene expression data, despite sample hetero-
geneity. We plan to develop further the package, along with our own research in the area, and
contribute towards the improvment and the popularisation of deconvolution techniques.

7 R session details

❼ R version 3.0.1 (2013-05-16), i686-pc-linux-gnu

❼ Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

❼ Base packages: base, compiler, datasets, graphics, grDevices, grid, methods, parallel, stats,
utils

❼ Other packages: annotate 1.38.0, AnnotationDbi 1.22.5, BH 1.51.0-1, bigmemory 4.4.3,
bigmemory.sri 0.1.2, Biobase 2.20.0, BiocGenerics 0.6.0, CellMix 1.6, corpcor 1.6.6,
csSAM 1.2.4, DBI 0.2-7, digest 0.6.3, doParallel 1.0.1, foreach 1.4.0, graph 1.38.1,
GSEABase 1.22.0, hgu133a.db 2.9.0, hgu133b.db 2.9.0, iterators 1.0.6, knitr 1.2,
limSolve 1.5.4, matrixStats 0.8.1, NMF 0.16.2, org.Hs.eg.db 2.9.0, pkgmaker 0.16.4,
RColorBrewer 1.0-5, registry 0.2, rngtools 1.2, RSQLite 0.11.4, stringr 0.6.2,
synchronicity 1.1.0

❼ Loaded via a namespace (and not attached): beeswarm 0.1.5, bibtex 0.3-5,
BiocInstaller 1.10.1, codetools 0.2-8, colorspace 1.2-2, dichromat 2.0-0, evaluate 0.4.3,
formatR 0.7, genefilter 1.42.0, ggplot2 0.9.3.1, gridBase 0.4-6, gtable 0.1.2, gtools 2.7.1,
IRanges 1.18.1, labeling 0.1, lpSolve 5.6.7, MASS 7.3-26, munsell 0.4, plyr 1.8,
preprocessCore 1.22.0, proto 0.3-10, quadprog 1.5-5, reshape2 1.2.2, R.methodsS3 1.4.2,
scales 0.2.3, splines 3.0.1, stats4 3.0.1, survival 2.37-4, tools 3.0.1, XML 3.96-1.1,
xtable 1.7-1
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