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Abstract

This vignette motivates and describes the functionalities of the CellMix package, an R
package for performing gene expression deconvolution analysis. The package defines a general
framework to apply, develop and test gene expression deconvolution methods. It incorporates,
generalises and extends the set of tools we implemented when developing a semi-supervised
approach to this problem, and includes several other previously published algorithms, hence
facilitating their application and comparison. A special focus is drawn on lists of cell/tissue
marker genes, which are very valuable resources as they may be used not only as prior knowl-
edge or post-hoc independent validation data by deconvolution algorithms, but also as gene
sets in classical enrichment analysis. We envisage that this package will provide the bioin-
formatics research community with an easy to use and flexible platform for working with
deconvolution methods, and cell heterogeneity in omics data in general.

This vignette aims at providing a general background on gene expression deconvolution, mo-
tivating the CellMix package, as well as describing its main features. It serves as supplementary
material for the following article:

Renaud Gaujoux et al. “CellMix: A Comprehensive Framework for Gene Expression Deconvolu-
tion”. In: accepted (2012)

Documentation, practical examples, and sample analyses can be found online at:
http://web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix

Note that to reproduce some of the examples in this vignettes, you will also need to have the
GEOquery package1 package installed, as well as some Bioconductor annotation packages which
will be installed when needed2:

# install biocLite

install.packages("BiocInstaller")

# or alternatively do: source(✬http://www.bioconductor.org/biocLite.R✬)

# install GEOquery (NB: might ask you to update some of your packages)

library(BiocInstaller)

biocLite("GEOquery")

1http://www.bioconductor.org/packages/release/bioc/html/GEOquery.html
2In an interactive R session, their installation is automated, after the user gives permission to do so.
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1 Introduction and Objectives

Our work on semi-supervised gene expression deconvolution (Gaujoux et al. 2011) revealed
several challenges that researchers must face when developing or simply applying gene expression
deconvolution methods. These challenges are essentially related to the availability and usabil-
ity of benchmark expression datasets, cell/tissue specific quantitative signatures, lists of marker
genes and/or deconvolution algorithms. Most of the time, one or more of these items will be
required, whether the objective is to deconvolve a specific global expression dataset or design new
methodologies.

1.1 Computational or in-silico gene expression deconvolution

Starting with Venet et al. (2001), many authors provided insights into how to estimate the cell
type/tissue specific signatures and/or relative cell type proportions from global gene expression
measurements, e.g., by microarray or RNA-seq, and proposed a variety of methods to do so (Zhao
et al. 2010). These methods are of two different types, distinct with respect to the input data they
require:

❼ the partial gene expression deconvolution methods require that either cell type-specific sig-
natures (Abbas et al. 2009; Clarke et al. 2010; Gong et al. 2011; Lu et al. 2003; Wang et al.
2006), or mixture proportions (Erkkila et al. 2010; Lähdesmäki et al. 2005; Shen-Orr et al.
2010; Stuart et al. 2004) are available;

❼ the complete deconvolution methods estimate both the cell/tissue signatures and the propor-
tions directly from the global gene expression data of the heterogeneous samples (Gaujoux
et al. 2011; Kuhn et al. 2011; Repsilber et al. 2010; Roy et al. 2006; Venet et al. 2001).

Figure 1 summarises the input data required by each type of method. It is clear from this figure
that the type of deconvolution problems addressed by each method differ in their complexity, which
increases as the input data requirement decreases:

1. Estimating proportions from known cell-type signatures: this is an overdetermined estima-
tion problem separately for each sample, having generally more observations (genes) than
coefficients to estimate (one proportion per cell type), which can potentially lead to very
robust and accurate estimates (Abbas et al. 2009; Gong et al. 2011) (Figure 1a). The number
of proportions to estimate is equal to the number of cell types r times the number of samples
p (r × p).

2. Estimating cell-type signatures from known proportions: this is also an overdetermined
problem, separately for each gene, provided that there are more samples than estimated
signatures. However, given the typical dimensions of gene expression data, with much more
genes than samples, the estimation is expected to be less robust to measurement errors than
in the previous case (Erkkila et al. 2010). The number of expression values to estimate is
equal to the number of cell types r times the number of genes n (r × n).

3. Estimating both signatures and proportions is a very loosely constrained problem, which
requires more advanced techniques (Repsilber et al. 2010; Roy et al. 2006) or the incorpo-
ration of additional constraints, either technical (Venet et al. 2001) or driven by biological
knowledge, as proposed by Gaujoux et al. (2011); Kuhn et al. (2011).

Strictly speaking, even complete deconvolution methods require some prior knowledge, often
in the form of sets of marker genes, i.e. genes which are – essentially – expressed by a single cell
type, among those expected to contribute to each sample’s expression profile. These markers are
used either to assign a posteriori estimated signatures to a given cell type (Repsilber et al. 2010),
or a priori to enforce expected expression patterns to ensure biologically relevant signatures are
recovered (Gaujoux et al. 2011). Kuhn et al. (2011) did not enforce marker gene patterns, but
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computed the average expression of each set of markers, as proxies for the actual cell proportions.
They then plugged these estimates into a standard linear regression analysis to correct for cell
heterogeneity, and test for cell-specific differential expression between control and Huntington’s
disease human brain samples.

(a) Partial deconvolution using available signatures (b) Partial deconvolution using available proportions

(c) Complete deconvolution from global expression

Graphic (b) was extracted from Shen-Orr et al. (2010), and modified to produce the other panels.

Figure 1: Partial vs. Complete gene expression deconvolution.
Partial deconvolution methods assume that either signatures (a) or proportions (b) are available and use
them to infer the unknown proportions and signatures respectively. Complete deconvolution methods (c)
infer both cell-type signatures and proportions from the global gene expression data.

1.1.1 General formulation

Although the relationship between the expression levels of pure and mixed samples is known
not to be strictly linear, previous work on gene expression deconvolution showed that the linearity
assumption is reasonable (Shen-Orr et al. 2010). Moreover, all approaches assume that gene ex-
pression at the cell level is independent of the cell type proportions, although this is expected not
to be the case for some genes. Hence, both partial and complete gene expression deconvolution
problems are most commonly formulated as linear models, with, for the complete problem, latent
variables corresponding to cell type specific signatures (Abbas et al. 2009; Clarke et al. 2010;
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Erkkila et al. 2010; Gong et al. 2011; Lähdesmäki et al. 2005; Lu et al. 2003; Repsilber et al. 2010;
Shen-Orr et al. 2010; Venet et al. 2001; Wang et al. 2006). That is that the global expression value
of gene i in sample j is the sum of its expressions in the r cell types:

xi =

r∑

k=1

wikhkj + ε,

where wik is the specific gene expression in cell type k, and hkj the proportion of cell type k in
sample j. Considering all genes together, this aggregates into the following approximate matrix
decomposition problem:

X ≈ WH. (1)

Depending on the method, authors enforce additional constraints such as nonnegativity for
gene expression values and proportions and sum to one constraints on proportions. As we have
seen above, choosing a method to solve the problem in Equation (1) may depend on the availability
of other auxiliary data, such as known signatures or cell type proportions. In the following we
review some of the methods that have been proposed in common data settings.

1.1.2 Partial deconvolution methods

Partial deconvolution methods assume that either the signature matrix W or the proportion
matrix H is available.

From signatures Most methods that estimate cell type proportions from quantitative cell type-
specific signatures regress the global gene expression X on the known matrix W of cell-specific
expression. Abbas et al. (2009) defined an optimised set of signatures for 17 different immune
cell types, and proposed a heuristic algorithm based on standard linear regression to enforce
nonnegative proportions, that are scaled to sum-up to one after fitting. We discuss the procedure
used to build these signatures in more detail in Section 1.4. They apply their method to white
blood cell samples from a cohort of Systemic Lupus Erythematosus (SLE) and healthy patients,
and found differences in proportions that were corroborated by FACS and clinical observations
(ibid.). Gong et al. (2011) proposed an alternative algorithm that incorporates the sum-up to one
constraint on the proportions within the fitting process, aiming at improving their estimation.
This seems indeed a natural constraint to impose, however, we found that these may make the
algorithm sensitive to scale discrepancies between the signatures and the global expression profiles
(see discussion in Section 2.2 and Figure 17). Although they used the same set of signatures, they
applied their algorithm to a different dataset, making it difficult to compare its performance with
the original method from Abbas et al. (2009). Lu et al. (2003) and Wang et al. (2006) used similar
approaches to, respectively, identify dynamics of yeast cells at different stages of the cell cycle, and
correct for varying proportions of mammary gland cell types in global mammary gene expression
data. Clarke et al. (2010) proposed a different approach, not based on linear regression, for the
case of two cell types, that requires signatures from only one of them.

From proportions Jacobsen et al. (2006) proposed a method to correct the expression values
of cell-specific genes for sample heterogeneity, with application to the detection of their differential
expression. Shen-Orr et al. (2010) proposed a method (csSAM ) to perform differential analysis
at the cell type levels, when proportions are available. Their approach consists in regressing the
global gene expression on the proportions using standard linear regression, and incorporating the
standard error estimates into a statistic that tests for differences in the estimated cell-specific
expressions. Lähdesmäki et al. (2005) proposed an alternate least squares algorithm to optimise
approximate estimates of proportions, as well as cross-validation and bootstrap methodologies to
estimate the number of cell types and compute standard error estimates respectively. Erkkila
et al. (2010) suggested a Bayesian method (DSection) for the same problem, which incorporates
uncertainty in the initial proportions using Dirichlet prior distributions on the proportions. The
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estimation is carried out by MCMC and Gibbs sampling. They showed that their method could
correct noisy initial estimates of proportions to be more consistent with the observed expression
data, and estimate standard errors that are less biased than those obtained by linear regression,
making them more suitable for detecting cell-specific differential expression.

From marker genes Some genes, commonly calledmarker genes, are known to be – essentially –
expressed only in a given specific cell type/tissue. Very recently, a few methods have been proposed
to estimate cell type proportions based on the expression of marker genes. Miller et al. (2011)
proposed a variety of aggregation method, including one based on gene co-expression networks, to
extract/compute a single representative measure from all marker gene expression profiles of each
cell type, which is used as an estimate of proportions. Bolen et al. (2011) calculated enrichment
scores (Subramanian et al. 2005) of sets of marker genes in each individual sample expression
profile, and used them as a proxy for cell type relative proportions, which was in turn used to
predict the source of any given gene expression signature.

1.1.3 Complete deconvolution methods

Venet et al. (2001) pioneered the study of complete gene expression deconvolution, proposing
an alternate nonnegative least-squares approach, using a heuristic to limit the correlations between
the estimated cell type signatures. The same algorithm was subsequently used by Repsilber et al.
(2010) and Lähdesmäki et al. (2005), although not using the same type of constraints. They applied
their method to gene expression from normal and cancerous colon tissues, previously reported as
being heterogeneous and containing varying proportions of muscle tissue (Alon et al. 1999). Using
their method, they estimated a muscle tissue signature, whose corresponding proportion matched a
muscle enrichment index that had been proved to correlate well with the samples’ muscle content.

Repsilber et al. (2010) proposed an Nonnegative Matrix Factorization (NMF) algorithm (de-
conf ) that corresponds exactly to Venet et al.’s algorithm, dropping the correlation constraints.
They evaluated their method using simulated data, in terms of power of detection of differential
expression, sensibility to sample size and normalisation method, and proposed a strategy, based
on random forest (Breiman 2001), to apply the method as a classifier. In (Gaujoux et al. 2011) we
proposed another NMF algorithm, designed to estimate more meaningful signatures, which reflect
prior knowledge of marker genes. Kuhn et al. (2011) used marker genes to first estimate a proxy
for each cell type proportions

The formulation of gene expression deconvolution as in Equation (1), in addition to the physical
nonnegativity constraints makes the NMF theoretical framework a natural choice for developing
complete deconvolution algorithms. In fact, some authors did explicitly label their recent approach
as NMF methods (Gaujoux et al. 2011; Repsilber et al. 2010). Even the algorithms proposed by
Venet et al. or Lähdesmäki et al. are typical NMF algorithms, although not named as such, and
use a classical alternate least-squares strategy.

1.2 Accuracy of deconvolution methods

The performance of computational deconvolution methods is generally assessed on datasets,
for which the quantities to be determined, i.e. cell signatures or proportions, are known and used
as a gold standard. These are typically data generated from titration experiments, where samples
are artificial mixtures of pure cell types, or from experiments where physical separation has been
performed for each sample. The comparison is commonly made in term of accuracy/precision (i.e.
mean difference/variance) or Pearson correlation between the true and estimated quantities. We
report here below the performances achieved by some of the deconvolution methods reviewed in
the previous sections.
Using cell type signatures defined from pure samples, Abbas et al. (2009) achieved good accuracy
(bias=2.4±1.4%) and precision (s.d. 0.78±0.52%) on a controlled mixture experiment of immune
cell lines, and a mean bias of 1.3 % when estimating the proportion of three T-cell subsets in
PBMC samples. When applied to blood samples from SLE and healthy patients, their method a
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resonably good Pearson correlation of 0.5196 with measured CBC data, and could identify differ-
ences between cases and controls in the proportions of several immune subsets. The aggregated
measures proposed by Miller et al. (2011) correlated well with actual proportions, when applied
to both the controlled mixture experiment from Abbas et al. (2009) (0.82 ≥ r ≤ 0.99), and real
clinical blood samples from Grigoryev et al. (2010), to a lower extend however (0.4 ≥ r ≤ 0.6 in
most cases). Bolen et al. (2011) applied their enrichment score approach to 161 PBMC samples
collected from different studies, which showed relatively good correlations to proportions estimated
using the partial deconvolution method from Abbas et al. (2009) (0.65 ≥ r ≤ 0.87 for most cell
types, but only r = 0.21 for T-cells, which they attributed to the quality of the markers used for
this particular cell type). We proposed ourselves a semi-supervised NMF approach (Gaujoux et
al. 2011), which significantly improved Pearson correlations between true and estimated cell type
proportions from about 0.5 to approximately 0.8, when compared to unsupervised NMF methods,
using the controlled mixture dataset from Abbas et al. (2009). Finally Kuhn et al. (2011)’s marker-
based linear regression reconstructed cell-specific expression levels from a controlled mixture of
pure brain cell expression profiles with Pearson correlations between 0.92-1.00. Moreover, they
showed that using few markers is sufficient for computing an efficient proxy for cell proportions,
from which moderate expression change can be detected, provided that sample-to-sample varia-
tions account for most of the total variance (compared to measurement noise). For instance, on
simulated data, 5 markers were enough to detect a 1.5 log fold change, while using more markers
increased power only marginally.

1.3 Benchmark gene expression datasets

For deconvolution algorithms to be developed, tested and validated, it is critical to be able
to benchmark and compare their performances on real data. For this purpose, gene expression
repositories such as the Gene Expression Omnibus (GEO) database (Barrett et al. 2010) or Array-
Express (Parkinson et al. 2009) are extremely useful data sources. In the context of deconvolution,
experiments that contain expression data from pure cell/tissue types, or from mixed samples with
known controlled/measured mixture proportions are especially interesting. These provide robust
ground truth references to calibrate and test deconvolution algorithms. As a matter of fact, several
such datasets are publicly available, and have been used in this way in recent publications (Erkkila
et al. 2010; Gaujoux et al. 2011; Gong et al. 2011; Miller et al. 2011; Shen-Orr et al. 2010).

1.3.1 The sample annotation issue

These datasets are stored in a standardised format, that can be can be conveniently accessed
programmatically, e.g in R using the packages GEOquery package3 (Davis et al. 2007) or Ar-
rayExpress package4 (Kauffmann et al. 2009). These packages can download datasets given their
accession numbers in GEO and ArrayExpress respectively, and load them in a format that inte-
grates well with other Bioconductor analysis routines. However, although being MIAME compliant
(Brazma et al. 2001), associated sample phenotypic annotation data, such as experimental factors
and in particular known cell proportions when available, are often encoded in annotation fields
by the submitting users, with no fixed standard. ArrayExpress is more flexible than GEO with
respect to the storage of such annotations, as multiple experimental factors and sample attributes
are appropriately implemented in separate named data fields, with identified levels (i.e. the set of
possible values for a given factor). Multiple sample annotations also have separate dedicated data
fields in GEO, but these are generically named characteristics ch1, characteristics ch1.1, etc. and
have no defined levels. The main issue however arises from the fact that annotations are often
stored all into a single composite data field, possibly not even the appropriate one, e.g. in the fields
normally dedicated to sample or source names. Hence, even if the data structure exists, neither
GEO nor ArrayExpress can automatically extract or infer all meaningful sample annotations from
composite fields or fields other than the dedicated ones. Figures 2 and 3 illustrate these issues

3http://www.bioconductor.org/packages/release/bioc/html/GEOquery.html
4http://www.bioconductor.org/packages/release/bioc/html/ArrayExpress.html
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Figure 2: Screenshot of the description page for dataset E-GEOD-29832 on ArrayExpress. Multiple
sample attributes are correctly stored into separate data fields (blue frame), but mixture proportions are
encoded into a single composite field (red highlighted text).

for datasets E-GEOD-198305, GSE198306 and GSE53507, where the cell proportions have to be
extracted from composite data fields encoded in various different ways.

Relevant phenotypic annotations are also frequently available as separate supplementary data,
which can take a variety of more or less convenient formats (e.g. txt, csv, xls, doc, pdf files),
possibly being ordered or identified with sample IDs in a different way than in the repository
expression data. Other times the data is not directly available, but must be enquired of the
authors. Overall, this means that these data are often not as straightforwardly usable as they
could be, requiring some pre-processing in order to get, extract or split relevant phenotypic data
into a more meaningful format. Researchers working with deconvolution methods would certainly
benefit from easy access to suitably pre-formated benchmark datasets, which would alleviate pre-
processing, and allow direct usage of data.

1.4 Cell/Tissue-specific quantitative signatures

Some partial gene expression deconvolution methods require the availability of a basis matrix,
i.e. cell type-specific expression signatures. These are typically used within the standard linear
regression framework, to estimate cell proportions in complex samples (Abbas et al. 2009; Gong
et al. 2011; Lu et al. 2003; Wang et al. 2006). Because there are usually much more probesets
in the basis signatures than cell type proportions to estimate, these methods are potentially very
robust and accurate. Even for the methods that do estimate the signatures (Erkkila et al. 2010;

5http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-19830
6http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19830
7http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5350
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# Dataset: GSE19830 [Shen-Orr et al. (2010)]

GSE19830 <- getGEO("GSE19830")[[1]]

levels(GSE19830$characteristics_ch1)

## [1] "tissue: 0 % Liver / 0 % Brain / 100 % Lung"

## [2] "tissue: 0 % Liver / 100 % Brain / 0 % Lung"

## [3] "tissue: 100 % Liver / 0 % Brain / 0 % Lung"

## [4] "tissue: 25 % Liver / 70 % Brain / 5 % Lung"

## [5] "tissue: 45 % Liver / 45 % Brain / 10 % Lung"

## [6] "tissue: 50 % Liver / 30 % Brain / 20 % Lung"

## [7] "tissue: 50 % Liver / 40 % Brain / 10 % Lung"

## [8] "tissue: 55 % Liver / 20 % Brain / 25 % Lung"

## [9] "tissue: 55 % Liver / 30 % Brain / 15 % Lung"

## [10] "tissue: 5 % Liver / 25 % Brain / 70 % Lung"

## [11] "tissue: 60 % Liver / 35 % Brain / 5 % Lung"

## [12] "tissue: 65 % Liver / 34 % Brain / 1 % Lung"

## [13] "tissue: 70 % Liver / 25 % Brain / 5 % Lung"

## [14] "tissue: 70 % Liver / 5 % Brain / 25 % Lung"

# Dataset: GSE5350 (MACQ project) [HUMAN]

GSE5350 <- getGEO("GSE5350")[[1]]

# extract Affy Human dataset (i.e. GEO platform GPL570)

i <- grep("GPL570", attr(GSE5350, "names"))

GSE5350 <- GSE5350[[i]]

# extract only mixture experiments

GSE5350[, grep("^MAQC", GSE5350$source_name_ch1)]

levels(droplevels(GSE5350$source_name_ch1))

## [1] "MAQC sample A, i.e., Stratagene Universal Human Reference RNA (UHRR, Catalog #740000)"

## [2] "MAQC sample B, i.e., Ambion Human Brain Reference RNA (HBRR, Catalog #6050)"

## [3] "MAQC sample C, i.e., MAQC samples A and B mixed at 75%:25% ratio (A:B)."

## [4] "MAQC sample D, i.e., MAQC samples A and B mixed at 25%:75% ratio (A:B)."

Figure 3: Examples of encoded phenotypic data from GEO data fields characteristics ch1 or
source name ch1 for datasets GSE19830 and GSE29832 respectively. Although the interesting data are
present, the fields require pre-processing in order to extract the data of interest, the cell type proportions
in this case.
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Repsilber et al. 2010; Shen-Orr et al. 2010), having reference basis signatures to compare with
makes it possible to assign the estimated signatures and/or assess their meaningfulness.

In many studies, the basis signatures are obtained from the complex samples themselves, by
separating, purifying and assaying the constituting cell types of interest. However, one would
ideally want signatures that are defined and optimised once for a given set of cell types, and may
be used for partial deconvolution of expression data from other independent experiments, without
the need for physical separation. For this approach to be valid, such generic signatures must clearly
be robust with regards to a variety of experimental factors. Moreover, an efficient probe identifier
cross-platform conversion pipeline should be designed, so that gene expression data generated on
a given platform can be deconvolved using signatures defined on another.

1.4.1 The delicate choice of basis signatures

When defining signatures for murine mammary gland development stages, Wang et al. (2006)
left aside cell type specific genes that were highly regulated, as their expression could prove to be
too sensitive to variations in biological conditions, and hamper the deconvolution accuracy. They
first selected tissue type specific probesets using a combination of pairwise comparisons between all
tissues (based on t-tests) and step-wise discriminant analysis, and computed the mean expression
within each tissue, for each time point in their time-course experiment. Probesets whose expression
did not correlate well with their associated tissue mean expression (Pearson correlation coefficient
less than 0.5), were then removed from the signatures.

In order to design an efficient basis matrix for whole blood deconvolution, Abbas et al. (2009)
considered the correlations between signatures and their collective ability to accurately deconvolve
global gene expression. Abbas et al. (2005) compiled microarray gene expression data for six key
human immune cell types and their activated and differentiated states. They used these data
to create the curated database Immune Response In Silico (IRIS) 8, that is composed of genes
selected for their specific expression in immune cells. Based on the same expression data, Abbas et
al. (2009) developed a partial deconvolution method for estimating the proportions of 17 immune
cell-types from microarray expression data from real blood samples, using only an optimised subset
of genes. They observed that the accuracy of the proportion estimates was closely correlated with
the condition number of the basis matrix: the lower the condition number the better the goodness
of fit, suggesting its use as a predictive measure of the deconvolution power of a given set of
signatures (see Section 4). After selecting and ranking the probesets according to their cell type
specificity (using a t-test approach), they built a sequence of basis matrices, by including an
increasing number of top probesets, and chose the one with the minimum condition number (359
probesets).

The deconvolution basis matrix designed by Abbas et al. (ibid.) proved to perform well on
real clinical data. When used to deconvolve white blood cell samples from a cohort of 72 SLE
and 45 healthy patients, the computed proportions of Lymphocytes, Monocytes and Neutrophils
showed an average Pearson coefficient of 0.5196 with the corresponding measured abundance by
CBC (ibid.). Using the same set of signatures on whole-blood samples from 28 Multiple Sclerosis
(MS) patients and 10 healthy donors, Gong et al. (2011) achieved Pearson correlation coefficients
of 0.85, 0.62 and 0.61 for each of these cell types respectively. Although the optimisation technique
used in this case was different from the one used by Abbas et al. (2009), it still fundamentally relies
on the robustness of the set of basis signatures. Having such data integrated with appropriate
partial deconvolution methods, would therefore enable the quick and detailed deconvolution of
blood gene expression data.

1.5 Marker gene lists

To be applicable, some complete deconvolution methods requires a list of marker genes, known
to be specifically expressed in different cell types or tissues. They used these marker genes a
posteriori to map the estimated signatures to known cell types (Repsilber et al. 2010) or as prior

8http://share.gene.com/clark.iris.2004/iris/iris.html
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knowledge to enforce expression patterns on de facto assigned signatures, as in the semi-supervised
method proposed in Gaujoux et al. (2011). Known cell/tissue marker lists may also be used in
classical enrichment analysis to assess, the pertinence or biological significance of given expression
profiles. Bolen et al. (2011) used PBMC subset-specific genes for predicting the most likely cellular
source of a predefined gene list from global PBMC expression data. The query gene list would
typically consist of a disease gene signature, as generated by gene expression differential analysis
of case vs. control patients in infectious disease studies. Using GSEA (Subramanian et al. 2005),
they computed, for each sample, the enrichment score of the query gene list and each cell subset-
specific gene set – sorted by expression values. The cellular source of the disease signature was
predicted to be the cell subset whose scores are the most correlated with the scores obtained for
the query list. Finally, as already mentionned, Kuhn et al. (2011) used maker genes to directly
estimate cell proportions, in a pre-step of their linear regression approach.

1.5.1 Public databases

A number of databases have been explicitly designed to provide cell/tissue specific gene level
information, in a tissue-centred manner. We mentioned above the IRIS database, that focuses on
immune cell types, providing marker genes9 for B cells, dendritic cells, monocytes, neutrophils,
Natural Killer (NK) cells and T cells, as well as for the lymphoid and myeloid lineages, and the
general category of all these immune cells. TiGER (Liu et al. 2008a) stores tissue-specific expres-
sion profiles for UniGene clusters in 30 human tissues based on UniGene EST database (Boguski
et al. 1993), with a focus on Transcription Factor (TF) interaction and cis-regulatory modules.
TissueDistributionDB10 (Kogenaru et al. 2009) is a repository of tissue-distribution profiles for 20
model organisms. It combines tissue expression profiles from UniGene with the Tissue Ontology
available from BRENDA11 (Gremse et al. 2011), to standardise tissue information and compute
tissue specificity measures for each gene at four different anatomical levels of the ontology, from
the more general (e.g. hematopoietic system) to the more specific localisation (e.g. blood platelet).
TiSGeD12 (Xiao et al. 2010) provides information on tissue-specific genes, compiled from multiple
public microarray datasets (over 123 000 expression profiles from 107 human tissues, 67 mouse
tissues and 30 rat tissues), and notably links to relevant literature. C-It13 (Gellert et al. 2010)
is a database of tissue-enriched genes from human, mouse, rat, chicken and zebrafish. Its spe-
cific objective is to integrate tissue information from UniGene from multiple organisms, together
with microarray and SAGE data, as well as using specific methods for handling alternative splic-
ing from exon array data. The aim is to provide a more comprehensive view of transcriptional
profiles, and reduce the number of false positive, given that evolutionary conservation of tissue
specificity provides greater confidence. Although its main focus is on identifying uncharacterised
genes, well characterised genes may be retrieved using loose filtering criteria on the number of
associated publications and Medical Subject Headings (MeSH) terms. Finally, VeryGene14 (Yang
et al. 2011) is a database for the annotation of human tissue-specific genes, with a primary focus
on integration with disease association and drug targets. At the time of writing, it contains entries
for 3960 genes covering 128 normal tissue/cell types compiled from the expression profiling of two
large microarray datasets (around 4,000 samples combined) (Liang et al. 2006; Su et al. 2004).

The heterogeneity in format, accessibility and biological identifiers across these databases limits
the potential of their data. Programmatic access to their complete data, together with a common
data structure, would make their integration and use with different gene expression datasets easier,
whether it is for gene expression deconvolution or enrichment analysis.

9More precisely Affymetrix probesets
10http://genius.embnet.dkfz-heidelberg.de/menu/tissue_db
11http://www.brenda-enzymes.org/ (Organism-related information > Source Tissue)
12http://bioinf.xmu.edu.cn/databases/TiSGeD
13http://c-it.mpi-bn.mpg.de
14http://www.verygene.com
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1.6 Availability of deconvolution algorithms

Gene expression deconvolution receives constant interest in bioinformatics research, and new
methodologies are regularly published. We reviewed in Section 1.1 the different deconvolution
methods of which we are aware. Methods and algorithms related to gene expression deconvolu-
tion are often developed in R, and sometimes available as R packages, under relatively liberal
license terms. From the point of view of access to the algorithms and free open-source software
development, this is actually not too bad a situation.

Abbas et al. (2009) briefly described the main R functions they used in the implementation of
their partial deconvolution approach. The csSAM algorithm15 from Shen-Orr et al. (2010) and
the semi-supervised approach16 from Gaujoux et al. (2011) are available as R packages, although
not on CRAN. The univariate strategy for predicting cell type abundances based on a single
representative measurement of Miller et al. (2011) is available as part of the WGCNA package17

(Langfelder et al. 2008). The cell subset prediction algorithm from Bolen et al. (2011) based on the
Gene Set Enrichment Analysis (GSEA) algorithm (Subramanian et al. 2005) is implemented via
a web interface, that uses R to run the analysis at the backend. The DSection algorithm and the
quadratic programming approach from Gong et al. (2011), however, are implemented in Matlabr,
with the complete code directly available for DSection only.

Given the variety of methods and implementations (i.e. of user interfaces), a standardised
and unified interface for running easily a variety of deconvolution methods, in most common
data settings, would be very useful. This would help popularise computational deconvolution, an
inexpensive technique that can provide insights into underlying biological processes, at the cell
type level.

In order to facilitate the application and development of gene expression deconvolution meth-
ods, we developed an R package called CellMix , the principal objectives of which are to provide
a) easy access to real benchmark data, and especially marker gene lists; b) implementations of
some common methods; c) utilities for assessing results and developing new methods.

2 Results

The CellMix package builds upon Bioconductor (Gentleman et al. 2004) and the NMF package
(Gaujoux et al. 2010), to provide a flexible general framework for gene expression deconvolution
methods. It aims at alleviating the challenges reviewed in the introduction of this vignette,
by defining a rich programming interface around three internal extensible registries dedicated
to benchmark datasets, marker gene lists and deconvolution methods respectively. This section
describes the main features of the CellMix package, and illustrates its capability with some concrete
examples. More technical details on the implementation itself can be found in Section 3.

2.1 Benchmark expression data

We designed a small internal repository of 13 datasets compiled from a variety of published
studies on cell/tissue specific gene expression or deconvolution methods. We typically looked for
data that contain cell type specific signatures or samples with mixture proportions, and ideally
both. We selected in particular data that have been used by – multiple – authors for validating
deconvolution approaches, such as datasets GSE1105818 and GSE1983019 from Abbas et al. (2009)
and Shen-Orr et al. (2010) respectively, also used by Gaujoux et al. (2011); Gong et al. (2011);
Miller et al. (2011).

Table 1a summarises the list of selected datasets together with some of their characteristics
(size, number of cell/tissue type). Columns Basis and Coef indicate with a Xwhich compositional

15http://buttelab.stanford.edu/public:data
16http://web.cbio.uct.ac.za/~renaud/paper/meegid-deconvolution
17http://cran.r-project.org/package=WGCNA
18http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11058
19http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19830
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data is available for each dataset – a “-” meaning that the data is not available in the registry.
Since the datasets are already stored and available on public repositories, it would be inefficient
to duplicate the data storage itself. Hence for each dataset, we defined a set of functions that
together compose a pre-processing pipeline, that is applied to the original – normalised – data
as available in public repositories. The pipeline combines the global expression data and, when
available, its constituting cell type specific signatures and proportions, into a single data object
(see Section 3.2). These data objects are directly usable for benchmarking deconvolution methods,
and implement the standard interfaces defined by the Bioconductor Biobase package20 and the
NMF package.

For a given dataset, the complete pipeline can be performed in a single call, as illustrated in
Figure 4, which shows sample code for loading dataset GSE11058. When loaded for the first time,
the data is downloaded from GEO, and stored locally, allowing for faster subsequent access, i.e.
in a different R sessions. Moreover, sample annotations are directly accessible, dedicated methods
enable to extract expression data for pure or mixed samples only, or access the known mixture
proportion or cell type signatures when available.

2.2 Whole blood deconvolution

The CellMix package includes the deconvolution basis matrix from Abbas et al. (2009), and
provides a dedicated interface function (gedBlood) to easily estimate the proportions of 17 im-
mune cell types from whole blood or white blood cell gene expression data. The interface also
facilitates the aggregation of these detailed proportions into proportions of the more general cell
type categories lymphocytes, monocytes, neutrophils. These aggregated proportions may be as-
sessed by comparing them with actual CBC data when available, as it frequently is the case in
recent clinical studies. Figure 5 shows sample code that illustrates how such proportions can be
estimated straightforwardly for dataset GSE2030021, which contains gene expression data of whole
blood samples from stable and acute rejection pediatric kidney transplant, for which CBC data
are available. These data where used by Shen-Orr et al. (2010) to illustrate the use of the csSAM
algorithm, and to identify differential expression between the two clinical groups of samples at
the cell type level, by deconvolving their global gene expression based on the measured CBC pro-
portions. We use it here the other way round, since we estimate proportions from independently
defined cell-specific signatures. Because this dataset is included in CellMix internal data registry,
the CBC data are readily accessible and used transparently by the different specialised functions.

By default, the proportions are estimated using the standard linear regression approach from
Abbas et al. (2009). Alternative estimation methods such as the quadratic programming approach
from Gong et al. (2011) may also be used (see Section 3.4). Moreover, the signatures are log-
transformed – if the global expression is itself in log-scale – and quantile-normalised together with
the global expression data prior to estimation (Bolstad et al. 2003). Our experiments show that
these pre-processing steps affect the accuracy and or correlation of the estimations as shown in
Figure 17, suggesting that scaling discrepancies must be taken into account in this kind of analysis.

The scatter plot shows that the estimated proportions are remarkably well correlated with the
actual measured proportions, to a lower extent for monocytes. These results are within the range
of correlations reported by other authors using the same set of signatures on different datasets
(Abbas et al. 2009; Gong et al. 2011), but achieve better separate correlations, probably due to
the joint normalisation of the signatures and the target matrix. To our knowledge, this is the first
time these data have been used in this way. The ease with which the results above are generated
highlights the usefulness of the CellMix package.

20http://www.bioconductor.org/packages/release/bioc/html/Biobase.html
21http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20300
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## load data

emix <- ExpressionMix("GSE11058")

## get relevant sample annotation cell type

emix$Type

## [1] Jurkat Jurkat Jurkat IM-9 IM-9 IM-9 Raji Raji Raji THP-1

## [11] THP-1 THP-1 MixA MixA MixA MixB MixB MixB MixC MixC

## [21] MixC MixD MixD MixD

## Levels: IM-9 Jurkat MixA MixB MixC MixD Raji THP-1

# cell type of origin

emix$CType

## [1] T T T B B B B

## [8] B B Monocyte Monocyte Monocyte MixA MixA

## [15] MixA MixB MixB MixB MixC MixC MixC

## [22] MixD MixD MixD

## Levels: B MixA MixB MixC MixD Monocyte T

## get the reference mixing proportions

coef(emix)[, c(1, 4, 7, 13:15)]

## GSM279589 GSM279592 GSM279595 GSM279601 GSM279602 GSM279603

## Jurkat 1 0 0 0.250 0.250 0.250

## IM-9 0 1 0 0.125 0.125 0.125

## Raji 0 0 1 0.250 0.250 0.250

## THP-1 0 0 0 0.375 0.375 0.375

## get the reference cell-type specific signatures

head(basis(emix), 3)

## Jurkat IM-9 Raji THP-1

## 1007_s_at 341.7 339 1444.0 209.6

## 1053_at 1997.5 2377 903.1 1488.6

## 117_at 153.6 325 173.6 201.9

Figure 4: Sample code for loading gene expression deconvolution datasets. The loaded data object com-
bines both the global gene expression and composition data. It also contains relevant sample annotations,
extracted from the original composite annotation sources.
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# load data

e <- ExpressionMix("GSE20300")

# compute proportions (show processing)

res <- gedBlood(e, verbose = TRUE)

## Loading basis signature from Abbas et al. (2009) ... OK [359 features x 17 cell types]

## Estimating proportions for blood cell subset(s): WB

## Mapping signature ids onto target ids (method: auto) ... OK [359 features x 17 cell types]

## Limit/reorder to common set of features ... OK [359 features x 17 cell types]

## Checking data dimension compatibility ... OK [359 features x 17 cell types]

## Using cell type signatures: ✬Th✬, ✬Th act✬, ..., ✬neutro✬ [17 total]

## Checking log-scale ... data:YES - signatures:NO

## Applying log-transform to signatures (base 2) ... OK

## Normalizing signatures and target together (method: quantiles) ... OK

## Using ged algorithm: "lsfit"

## Estimating cell proportions from cell-specific signatures [lsfit: ls]

## Timing:

## user system elapsed

## 1.596 0.028 1.634

## GED final wrap up ... OK

# aggregate into CBC

cbc <- asCBC(res)

# plot against actual CBC

## profplot(e, cbc)
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Figure 5: Computed proportions vs. Actual CBC proportions of lymphocytes, monocytes and neutrophils
for dataset GSE20300. The deconvolution is performed using the qprog algorithm in combination with the
basis signature matrix from Abbas et al. (2009). Computed proportions are obtained from the aggregation
of proportions of the detailed subset of immune cells into their respective category. First diagonal is shown
as a reference for perfect agreement.
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m <- MarkerList("Palmer")

summary(m)

## <object of class MarkerList>

## Types: 5 [✬B✬, ✬CD8✬, ..., ✬T✬]

## Mode: numeric

## Markers: 907

## IDtype: unknown [✬FREB✬, ✬CD20✬, ..., ✬LRIG1✬]

## Values: [0.953208, 0.950334, ..., 0.517031]

## Source: org.Hs.eg.db

## Breakdown:

## B CD8 GRANS LYMPHS T

## 314 22 344 39 188

Figure 6: Sample code for loading a marker gene list from the internal registry.

2.3 Marker gene lists

The CellMix package includes 9 lists of marker probesets defined from public tissue-centred
databases, as well as from three gene expression microarray studies of PBMC samples. These latter
lists are valuable resources for the deconvolution of clinical human blood samples. They include
the refined subset of immune genes that compose the basis deconvolution matrix from Abbas et
al. (2009), data from Palmer et al. (2006), who defined markers for B-cells, CD4+ T-cells, CD8+
T-cells, lymphocytes and granulocytes using cDNA microarrays from purified cells, and data from
HaemAtlas as generated by Watkins et al. (2009), who more recently defined markers for CD4+
T-cells and CD8+ T-cells, lymphocytes, CD14+ monocytes, CD19+ B-cells, CD56+ NK cells,
and CD66b+ granulocytes, as well as for Erythroblasts (EBs) and Megakaryocytes (MKs), using
Illumina BeadChip arrays.

Similarly to the benchmark expression data, the marker lists are organised in an internal
registry, that facilitates their management and the addition of new lists, as they become publicly
available. For completeness and reproducibility, all the functions used to generate them from their
respective original data files also available and documented in the package. Beside the markers’
information itself (i.e. identifiers and possibly specificity scores), the registry contains important
auxiliary data, such as the relevant annotation package that is required in practice for some
marker lists to be used in combination with expression data, generated on different platforms
(see example below). We also defined a specific data structure that provides a rich interface to
create and manipulate these data in a convenient way, well integrated with R and Bioconductor
standards. Table 1b summarises the marker lists currently available in the CellMix package along
with their respective auxiliary data.

2.3.1 Specificity scores

Marker lists are stored as complete as possible, and each marker is associated with a specificity
score (e.g. percentage expression, sparseness) when such value is available or can be computed.
We designed the registry interface to make it possible to filter the lists based on these scores when
retrieving the data from the registry, the default being to use some stringent threshold. Figure 6
shows sample code that illustrates how maker lists are loaded from the registry, and display the
summary view of the returned data structure. The marker list shown was defined by Palmer et al.
(2006), for which the specificity scores (0.953208, 0.950334, etc.) corresponds to the correlations
of each marker’s expression profile with the theoretical relative abundance profile of their assigned
cell type as provided by Palmer et al.

The list of markers derived from the Abbas dataset provides another example of specificity
score, that we defined as the sparseness each marker’s expression profile, as defined by Hoyer
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(2004):

sparseness(x) =

√
n−

∑
‖xi‖√∑

x2

i√
n− 1

,

for any vector x in R
n, i.e., here the vector of expression values of a given marker across all

samples.
The default is to extract only the probesets whose sparseness is greater than 0.8, which filters

out probesets that are expressed by multiple cell types, but the complete list may be retrieved
using a null sparseness threshold. The bar chart in Figure 7 illustrates the effect of this filtering
step, by showing the expression profiles of six probesets across the immune cell samples from this
dataset, chosen from both ends of the complete sparseness spectrum. The bars are coloured from
dark red to dark blue by decreasing sparseness, shown in parenthesis in the legend. Probesets
with low sparseness values (blue) are expressed relatively uniformly over almost all the cell types,
while those with high sparseness values (red) are highly specific, in this case all to neutrophils. As
a result, by default, the red probesets would be included in the marker list, while the blue would
be excluded.

2.3.2 Using marker lists across platforms

In practice, gene expression data can be generated in multiple ways, using different tech-
nologies (e.g. microarrays, next generation sequencing) provided by different manufacturers (e.g.
Affymetrix, Illumina, Roche). When working with microarray data in particular, one has to face
the well known issue of probe annotation, which becomes all the more critical if one wants to
integrate data from multiple platforms (Carter et al. 2005; Draghici et al. 2006; Mecham et al.
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2004). This issue is relevant in the context of deconvolution, as the global or tissue/cell specific
expression data with which the marker gene lists are to be used may come from a different source,
e.g. markers provided as UniGene or Affymetrix IDs with data generated on an Illumina chip.
One may also want to compare marker lists generated for different organisms (hence different
platforms), which would provide insights into the conservation of tissue/cell specific expression
patterns or help build more refined and robust marker lists.

The marker lists available in the CellMix package were generated from diverse microarray
datasets and/or the UniGene EST database. In order to keep as much information as possible
from the original data source, the markers are stored using their original identifiers, which can
be manufacturer probeset ids (e.g. ’123456 at’, ’ILMN 123456’), UniGene ids (e.g. ’Hs.123456’,
’Rn.123456’), Entrez ids ( e.g. ’123456’) or gene symbols (e.g. ’FREB’). Working with such an
heterogeneous set of identifiers can be very tedious, particularly due to the lack of any definite
one-to-one relationship between them. Consequently many online tools have been developed for
mapping and converting ids between the different systems of keys (Alibés et al. 2007; Allen et al.
2011; Bussey et al. 2003; Diehn 2003). We developed a flexible interface to run a pipeline based on
Entrez ids and Bioconductor annotation packages (annotate: Annotation for microarrays; Gentle-
man et al. 2004), that converts marker gene lists – and more generally biological/manufacturer
identifier lists – between different types of ids. This greatly facilitates the usage of maker lists
across multiple microarray platforms or organisms. As starting point, we employed a relatively
simple mapping strategy, which only allowed for retrieving either all matching probes or only the
first one, including a slightly improved heuristic for Affymetrix probeset identifiers, whose format
contains some information on the probeset specificity (e.g. ’* s at’ IDs designate probesets that
share common probes among multiple transcripts from different genes). However, we will look
in the future at integrating more complex and robust mapping strategies, such as using BLAST
alignment based annotations or consensus annotation (Allen et al. 2011), and investigate data-
driven approaches, with the objective of optimising marker gene lists for use with a particular
dataset (see Section 4).

Example: from Illumina to Affymetrix We illustrate in the following the use of our con-
version pipeline. For instance, suppose one has a marker list such as the ones from HaemAtlas
(Watkins et al. 2009), whose original identifiers are probe IDs from the Illumina HumanWG6v2
chip, and wants to use it with data generated on an Affymetrix HG U133 Plus 2.0, such as the
dataset GSE11058 (Abbas et al. 2009). This dataset contains gene expression measurements for
4 cell lines of immune origin (Jurkat from T cells, Raji and IM-9 from B cells, and THP-1 from
monocyte cells), that were hybridised either alone or in mixtures of known proportions. Figure 8
shows how this conversion can be carried out using the CellMix package, in the same time illus-
trating usage of the registry for expression data and marker lists. We show in Figure 16 the same
example with verbose output, which provides more details on what happens during the mapping
process.

After conversion the marker list is indexed with Affymetrix IDs that match row names in the
expression matrix, and may be used to access the markers’ expression values, or in combination
with some of the visualisation utilities included in the package. For example, Figure 9 shows bar
charts of the content of both the original (Illumina IDs) and converted (Affymetrix IDs) lists, in
term of number of markers per cell type. The R code that generates the plots is also shown22. Due
to differences in the platform designs, it is expected that some of the probes cannot be uniquely
matched, hence the smaller number of probes available for each cell type after conversion.

2.3.3 Assessing marker expressions in pure samples

Given the range of possible technical and biological variation between experiments, marker
genes from a given list may show inconsistent or less cell type specific expression patterns on

22For clarity purposes, some aesthetic processing is not shown in the code, e.g. setting graphical parameters
las=2, cex.axis=0.7.
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## PRELIMINARY: load data from the internal registries load HaemAtlas

## markers

m <- MarkerList("HaemAtlas")

summary(m)

## <object of class MarkerList>

## Types: 8 [✬B-CD19✬, ✬Erythroblast✬, ..., ✬T-CD8✬]

## Mode: character

## Markers: 2069

## IDtype: .Illumina [✬ILMN_1793637✬, ✬ILMN_1663575✬, ..., ✬ILMN_1815673✬]

## Source: illuminaHumanv2.db

## Breakdown:

## B-CD19 Erythroblast Granulocyte-CD66b Megakaryocyte

## 247 322 878 279

## Monocyte-CD14 NK-CD56 T-CD4 T-CD8

## 205 82 51 5

# load the data using its key NB: require Internet access on first usage)

e <- ExpressionMix("GSE11058")

# probes are not from the same platform

annotation(e)

## [1] "hgu133plus2.db"

##

# convert Illumina to the IDs used in the expression data (HGU133plus2) ->

# this looks for a single match per probe, dropping non-primary affy

# probes

m_affy <- convertIDs(m, e)

summary(m_affy)

## <object of class MarkerList>

## Types: 8 [✬B-CD19✬, ✬Erythroblast✬, ..., ✬T-CD8✬]

## Mode: character

## Markers: 1643

## IDtype: .Affymetrix [✬206513_at✬, ✬207655_s_at✬, ..., ✬221126_at✬]

## Source: hgu133plus2.db

## Breakdown:

## B-CD19 Erythroblast Granulocyte-CD66b Megakaryocyte

## 173 277 661 248

## Monocyte-CD14 NK-CD56 T-CD4 T-CD8

## 179 60 41 4

Figure 8: Sample code for converting the HaemAtlas marker list defined by Watkins et al. (2009), from
Illumina HumanWG6v2 probe identifiers to Affymetrix HG U133 Plus 2.0 probeset ids. This code also
illustrates the usage of the internal registries for expression data and marker lists.
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bp <- barplot(m, main = annotation(m))

barplot(m_affy, ylim = bp$ylim, main = annotation(m_affy))
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Figure 9: Number of markers for each cell type in the original HaemAtlas marker list from Watkins
et al. (2009) that uses Illumina HumanWG6v2 probe IDs (left panel) and in the list converted to match
probesets on Affymetrix HGU 133 Plus 2.0 (right panel).

an independent dataset. When the considered dataset contains expression values from pure cell
types, for which markers are present in the list, one may qualitatively evaluate their consistency
with their respective markers, by visualising the expression profiles of these. We illustrate this
assessment method using the same dataset and the same marker list as in the previous section,
that is, respectively, the GSE11058 dataset from Abbas et al. (2009), in which the pure samples are
from transformed cell lines from immune origin, and the list of markers from HaemAtlas (Watkins
et al. 2009), which contains markers for a variety of blood cell types (T cells, B cells, Monocytes,
etc.). Importantly, these markers were defined completely independently from the cell line dataset.
Looking at the markers’ expression across these samples, provides insight on how similar the cell
lines are to their cell type of origin, and vice-versa.

Figure 10, shows for each cell type in HaemAtlas, the average expression values of the 50 most
uniformly highly expressed markers in each cell line. More precisely, each marker is first attributed
a measure of uniform expression, computed as the maximum of its minimum expression within
each cell line, and then ordered decreasingly according to this value, within its respective cell type
in the marker list. The CellMix package makes these computations very easy, via the reorder

function which implements by default this maximin score, and allows for custom scoring schema.
The specialised subsetting operator [] defined for the marker list data structure, enables the 50
top scoring markers to be extracted separately for each cell type. Besides, because the dataset
was retrieved from the internal registry which stored information about which sample is pure, the
expression data for the pure samples only are readily extracted using the function pureSamples.

The expression patterns in Figure 10 are very different from what would be expected given the
cell type of origin of each cell line. Expression values for the complete list of markers, ordered in
the same way, show similar patterns (Figure 18). Erythroblast, Granulocyte and Megakaryocyte
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markers (yellow and greens) appear to be highly expressed at similar levels by all cell lines,
with THP-1 cells – which are from monocytes – expressing Granulocyte markers at a relatively
higher level. This is surprising since Erythroblast and Megakaryocyte are precursor cells for red
blood cells and platelets respectively, which are completely different lineages from monocytes and
lymphocytes. In terms of hematopoiesis, monocytes are closer to Granulocytes than B cells and T
cells, but are still very distinct cell types (cf. the hematopoietic tree Figure 14 in Appendix B). In
any case, the main concern here comes from the fact that Watkins et al. (2009) originally selected
these markers for their ability to distinguish between all these cell types. Consequently, one would
expect each cell line to express only the markers from their cell type of origin. This discrepancy
could be explained by the fact that the cell lines Raji, Jurkat, THP-1 and IM-9 were originally
cloned from cancer immune cells (Epstein et al. 1966; Fahey et al. 1971; Schneider et al. 1977;
Tsuchiya et al. 1980), and are therefore not quite equivalent to primary immune cells, especially
in terms of gene expression. Plots such as the bar chart in Figure 10 provide a way to visually
assess how much they differ in reality, through the prism of known marker genes.

This more generally raises a potential caveat of using marker genes for the analysis of gene
expression in – heterogeneous – diseases. Indeed, the disease under study might well affect the
expression of the a priori chosen marker genes, possibly non uniformly across samples, even
within disease groups due to unknown or unannotated disease subtypes. Clearly, including in
the sets of markers genes whose expression is not cell type-specific in the particular conditions
would jeopardise the estimation and identification of signatures and proportions. It is therefore
important to – be able to – assess the discriminating power of a given list of genes in the context
of the data to be deconvolve (see Section 4).

As a control step, we plotted in Figure 11 the expression values of markers from the same list
in the basis signatures from Abbas et al. (2009). We recall from Section 2.2, that these signatures
were defined by Abbas et al. to represent the cell-specific gene expression of 6 immune cell types, in
different activation states (e.g. helper T cells (Th), activated helper T cells (Th act)), optimised for
performing accurate detailed deconvolution of blood samples. Importantly again, these signatures
were defined from microarray gene expression data, completely independently from the marker
genes in HaemAtlas. This time, the expression patterns are mainly as expected, with the exception
of one Natural killer cell (NK) marker expressed by the cytotoxique T cell signature, and few
Granulocyte markers expressed in the monocyte signatures. This increases confidence in both the
considered marker gene list and signatures.

2.4 Deconvolution methods

The CellMix package provides access to a range of gene expression deconvolution methods,
in such a way that they can easily be applied on commonly available data. Combined with the
framework developed for benchmark expression data and marker gene lists, this facilitates the
comparison and development of methodologies.

Amongst the methods we reviewed in Section 1.1, we included the quadratic programming
method from Gong et al. (2011), the csSAM least-squares algorithm from Shen-Orr et al. (2010),
the Bayesian algorithm DSection from Erkkila et al. (2010), the unsupervised NMF method deconf
from Repsilber et al. (2010), as well as our semi-supervised approach (Gaujoux et al. 2011). Again,
all algorithms are stored in an extendible internal registry and convenient interface functions are
provided. Table 2 lists all built-in algorithms, along with their respective requirements in terms
of input data and iterations (i.e. single or multiple iterations), which is related to the associated
computational cost. The first column contains the access key to run the algorithm in CellMix
package. Columns Basis, Coef and Markers indicate which input data is required for running
each algorithm (Required: X, Not required: -). The last column indicates how many default
iterations the algorithm performs to fit a model. A “-” means that the algorithm is not iterative
and generally runs relatively fast; a positive value means that an iterative process is used to
estimate the unknown data and may be computationally intensive. For the MCMC algorithm
DSection, this corresponds to the number of samples performed after the burn-in period, which
defaults to 4 times the number of samples. For the NMF algorithms deconf, ssBrunet and ssLee,
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Figure 10: Expression values of the 50 genes of each cell type in HaemAtlas (Watkins et al. 2009), that
are the most uniformly highly expressed in each immune cell line from dataset GSE11058.

this corresponds to the number of block-descent minimising iterations.

2.4.1 Automatic method selection

From a practical point of view, we notice that the choice of an applicable method is essen-
tially determined by the type of data available and the computational resources one is prepared
to use. This enables the implementation of a simple procedure for automatically choosing a suit-
able method, given the input data and the number of possible iterations, and performing gene
expression deconvolution in all common situations. We describe here below this procedure, which
is implemented within the main interface function ged that internally dispatches to the relevant
method. Obviously, any deconvolution method may also be explicitly specified, which bypasses
the automatic choice procedure.

Known signatures If reliable cell type-specific signatures are known, then estimating the mix-
ture proportions using a standard least-squares approach to linearly regress the global gene ex-
pression on the signatures constitute a sensible choice, which has proven to lead to robust results
(Abbas et al. 2009; Gong et al. 2011), for a small computational cost (see also Figure 5). The
default in this case is to use the quadratic programming approach from Gong et al. (2011), which
is based on a more theoretically grounded constrained optimisation technique, which properly
handles the nonnegativity and sum-up-to-one constraints on the proportions.

Known proportions If mixture proportions have been measured with good accuracy, then a
similar linear regression approach for estimating the signatures may be applied. In this case,
partial deconvolution is performed using the csSAM algorithm from Shen-Orr et al. (2010), which
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# convert Illumnina marker ids to match Abbas feature id type

ma <- convertIDs(m, Abbas, method = "all")

# plot markers expression values in Abbas dataset

barplot(ma, Abbas, las = 2, ylab = "")
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Figure 11: Expression values of the HaemAtlas marker genes (Watkins et al. 2009) in the basis signature
matrix from Abbas et al. (ibid.). The bar chart shows the expression values for the 3491 probesets in the
basis matrix that could be mapped by Entrez ID to markers from the list.
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basismarkermap(mo[, 1:50], avg, Rowv = NA)

basismarkermap(ma, Abbas, Rowv = NA)

(a) Cell lines from GSE11058
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(b) Signatures from Abbas et al. (2009)
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Figure 12: Heatmap of expression values of the HaemAtlas marker genes in cell lines from GSE11058 and
the basis signature matrix from Abbas et al. (ibid.). (a) shows the average expression values for 50 marker
genes, as computed in Figure 10. (b) shows the expression values of all markers in each cell type included
in the immune signatures.

in addition is able to compute statistics of differential expression at the level of each cell-type if
provided with two groups of samples (e.g. case/control).

Uncertain proportions If mixture proportions are known only to a certain degree of confidence
(e.g. measurement errors or rough a priori estimation), then the Bayesian DSection algorithm
(Erkkila et al. 2010) is applied using these prior estimates, to estimate cell-specific signatures,
together with adjusted mixture proportions that are more consistent with the observed global
expression data. If multiple groups of samples are defined, this algorithm computes signatures and
standard error estimates for each group separately, suitable for performing pairwise differential
expression analysis. Note that it is technically not possible to decide which of the csSAM or
DSection algorithms should be used, only based on the main input data (a matrix of proportions),
whose accuracy is not intrinsically defined. The choice of methods then relies on the number of
iterations requested by the user, requiring multiple iterations meaning that the proportions should
be considered uncertain and used as priors in a Bayesian framework, rather than as accurate
observations in a standard regression model.

Known marker genes If only a list of marker genes is available, without their expression levels
in each cell type, then complete deconvolution is performed using our semi-supervised approach
(Gaujoux et al. 2011). Although the deconf algorithm (Repsilber et al. 2010) is also applicable in
this case, we have shown the benefit of incorporating the marker information within the fitting
process, as opposed to using it a posteriori (Gaujoux et al. 2011). Moreover, as it is currently
implemented, the deconf algorithm is computationally too demanding on large datasets to be
used by default.

Global expression only Given the performances of the deconf algorithm in a completely unsu-
pervised setting (ibid.), it is used when no other data than the global expression measurements are
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Description Basis Coef Marker Iter

lsfit Partial deconvolution of proportions using least-
squares fits (Abbas et al. (2009))

X - - -

cs-lsfit Partial deconvolution of cell signatures using least-
squares fits

- X - -

qprog
Estimates proportions from known expression sig-
natures using quadratic programming (Gong et al.
(2011))

X - - -

cs-qprog
Estimates constrained cell-specific signatures from
proportions using quadratic programming [experi-
mental]

- X - -

DSA Complete deconvolution using Digital Sorting Algo-
rithm (Zhong et al. (2013))

- - X -

csSAM Estimates cell/tissue specific signatures from known
proportions using SAM (Shen-Orr et al. (2010))

- X - -

DSection Estimates proportions from proportions priors using
MCMC (Erkkila et al. (2010))

- X - 500

ssKL Semi-supervised NMF algorithm for KL divergence,
using marker genes (Gaujoux et al. (ibid.))

- - X 3000

ssFrobenius Semi-supervised NMF algorithm for Euclidean dis-
tance, using marker genes (Gaujoux et al. (ibid.))

- - X 3000

meanProfile Compute proportion proxies as mean expression pro-
files

- - X -

deconf Alternate least-square NMF method, using heuristic
constraints (Repsilber et al. (2010))

- - - 1000

Table 2: Algorithms for gene expression deconvolution available in the CellMix package. The first column
contains the access key to run the algorithm with the main interface function ged. Required data are
indicated by a X. The values in column Iter correspond to the default number of iterations performed. A
“-” means no intensive iterative process is used.

available. Alternatively the ssBrunet and ssLee algorithms may be used in this situation. Since
no markers are used in this case, they are equivalent to the standard NMF algorithms from Brunet
et al. (2004) and Lee et al. (2001), using the stationarity of the objective function as stopping
criterion.

2.4.2 Unified versatile interface

The main interface to run any deconvolution algorithms is implemented in the ged function,
whose main arguments are (1) the global gene expression data, supporting all commonly used R
types for matrix-like objects (matrix, data.frame, ExpressionSet); (2) the input data, which
can either be a matrix-like object containing known signatures or proportions, or a list of maker
genes, or the number of cell/tissue from which signatures and/or proportions must be estimated;
(3) the number of iterations to perform; (4) optionally the name of the deconvolution method to
use. When no method is specified, it is inferred using the procedure described in the previous
section, based on the type and dimensions of the input data (argument (2)) – and in some cases
the number of iterations (see above).

Figure 13 shows sample code that deconvolves a given gene expression data object X, of dimen-
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# expression data only: deconf

ged(X, 3)

# with markers only: qprog

ged(X, marks)

# with markers only, iterative: ssBrunet

ged(X, marks, maxIter = 1000)

# with known signatures: qprog

ged(X, sig)

# with known proportions: csSAM

ged(X, prop)

# with uncertain proportions, iterative: DSection

ged(X, prop, maxIter = 500)

# force a given algorithm, with extra parameter: ssLee

ged(X, 2, method = "ssLee", markers = marks, ratio = 3)

Figure 13: Sample code for running any deconvolution algorithm. Each line results in a call to a different
method, which is determined according to the input data and the number of desired iterations. The last
line explicitly specifies a method and extra parameters to form a more complex call.

sion n×p, using different kinds of input data. The objects marks, sig and prop are assumed to be
respectively a list of marker genes for r cell types, a matrix of expression signatures of dimensions
n × r, or a matrix of known proportions of dimension r × p – with r < p. The last line illus-
trates how one can specify which method should be used and perform more complex calls. In this
latter case, signatures and proportions for only the two first cell types in the marker list would
be estimated by the method ssLee – that would normally not have been called given the kind
of input data (default being to use ssBrunet). The parameter ratio is specific to this method,
and controls the expression level threshold of marker genes in their corresponding cell types (e.g.
ratio=2 requires each marker to be expressed by their respective cell type at least three times
more than by other cell types).

3 Methods

This section provides relevant implementation details on the internal registries, how the data
objects for benchmark datasets are effectively built from their original format, how the marker
gene lists were built from the different public databases and microarray studies, and finally how
each deconvolution method is implemented.

3.1 Internal registries

The CellMix package makes an intensive usage of internal registries to organise, store and man-
age the different kind of data that are at the core of the package, i.e. benchmark datasets, market
gene lists and deconvolution algorithms. For this purpose we use the registry package23 (Meyer
2012) which provides the basic generic infrastructure for registries, with convenient access meth-
ods. This package allows to define sets of data fields, with the possibility to control their types,
validity and access-rights. Its simplicity of use makes it very easy to integrate extensible features
with plugin-like capabilities in any R package.

23http://cran.r-project.org/package=registry
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3.2 Loading pipeline for benchmark datasets

An internal registry stores for each benchmark dataset the following set of pre-processing
functions that compose a pipeline which combines both global expression and cell type specific
data into a single data object:

1. Load the expression data, possibly downloading it from its web repository;

2. Filter (optional), e.g. to remove data not related to pure or mixtures samples;

3. Extract/add phenotypic or feature annotation data, e.g. mixture proportions;

4. Create ground truth reference signatures.

The loading step (1) is common to all datasets, and builds upon features from the GEOquery
package, that downloads files directly from the GEO repository. A transparent caching system
reduces the loading time of subsequent access to the data, by storing the original expression
data download locally as .rds files (a compact binary R format). The optional filtering step (2)
enables to subset the original data, to only retain relevant features or samples. For example,
the dataset GSE5350 24 contains samples from a controlled mixture experiment, as well as from
normal/tumour colon samples, which are removed by the filtering step, that in this case keeps
only the samples whose source name starts with ’MAQC’ (see Figure 3).

Once the data filtered, meaningful phenotypic information is extracted from different sources,
prioritarily focusing on the constituting cell/tissue types and their mixture proportions. For
controlled mixture or titration experiments, we extract mixture proportion data directly from the
publicly available material (experiment description, data fields, supplementary data). For some
of the clinical sample datasets however, CBC or flow cytometry data were not directly available
online, or were available only as aggregated results (e.g. mean by case/control group), or with
ID mapping issues. We obtained these from the authors, who quickly responded and provided us
with the necessary information25.

The last processing step consists in defining the ground truth reference gene expression signa-
tures for each constituent, which are stored together as an NMF model. For simple experiment
designs, that contain expression data from pure samples, these signatures are computed as the
mean expression values among each cell type separately. No reference signatures were computed
for experiments with more complex designs such as the time course experiments in GSE2288626

(Abbas et al. 2005) and GSE2422327 (Grigoryev et al. 2010), but users can relatively easily com-
pute condition-specific signatures, using the relevant phenotypic data made readily available by
the annotation extraction step (3).

3.3 Marker gene lists

Marker lists from the IRIS, TiGER and VeryGene databases were extracted from the complete
data which can be downloaded from the respective websites. Each one of these database defines
marker specificity scores, that are conserved in the internal registry.

Marker lists for Human and Rat tissues from TissueDistributionDB were created using the web
interface and the queries shown in Figure 15, which returned a total of 70361 and 22342 entries
respectively. Each entry is constituted by a pair (UniGene ID, Tissue type), associated with
two numeric values (1) The percentage – expression – value28, which corresponds to the relative
proportion of ESTs from the UniGene cluster in the tissue type, normalised across all tissues.
(2) the tissue specificity index29, which indicates how many other tissues also express ESTs from

24For this dataset, we only consider the data from the GPL570 platform, i.e. Affymetrix Human Genome U133
Plus 2.0 Array, that is accessible separately.

25We thank Stephen Popper, Alexander Abbas, Shai Shen-Orr and Alexei Grom for the data they provided.
26http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22886
27http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24223
28http://genome.dkfz-heidelberg.de/menu/tissue_db/faq.html#percent
29http://genome.dkfz-heidelberg.de/menu/tissue_db/faq.html#speci
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the UniGene cluster. The data for all these entries are available in the package’s internal registry,
including their respective percentage value and specificity index. By default, marker genes for a
given tissue are defined as those whose percentage value is greater than 99%, i.e. those whose
cumulated relative expression in all other tissues is at most 1 percent of the relative expression
in the assigned tissue. Markers are then ordered by decreasing percentage value and increasing
tissue specificity index.

The marker list with access key Abbas was extracted from the refined subset of immune genes
that compose the basis deconvolution matrix from Abbas et al. (2009). We assigned each probeset
to its most expressing cell type, and computed the sparseness of its expression profile across cell
types, that is used as a specificity score and defined by Hoyer (2004) as:

Sparseness(x) =

√
n−

∑
|xi|√∑
x2

i√
n− 1

,

where in our case x is the expression profile of a given probeset, and n the number of cell types.
It is equal to 1 if and only if x contains a single nonzero component, meaning that the gene is
expressed by a single cell type, and is equal to 0 if and only if all components of x are equal,
meaning that the gene is uniformly equally expressed by all cell types.

The marker list from HaemAtlas (Watkins et al. 2009) was extracted from the Supplementary
Table 5 of the related paper30. Curiously, although they are supposed to be relative to Illumina
HumanWG-6 version 2 Expression BeadChip arrays, none of the probe ids found in the table
match the Illumina probe ids used in the corresponding illuminaHumanv2.db annotation pack-
age31 (illuminaHumanv2.db: Illumina HumanWG6v2 annotation data (chip illuminaHumanv2))
from Bioconductor. However, since these data provide the nucleotide sequence of each probe, we
could uniquely match all of them by nuID (Du et al. 2007) to the probe IDs from the annotation
package. The latter were eventually used as identifiers in the marker gene list. No specificity score
is available for this marker list.

The marker list from Palmer et al. (2006) was extracted from the supplementary file associated
with the paper32. The internal registry contains for each marker two numeric values that may be
used as specificity score: (1) the correlation with the theoretical abundance of the assigned cell
type; (2) expression fold-change from the differential analysis between cell types carried out by
Palmer et al. No default filtering is applied.

3.4 Deconvolution methods

All algorithms are implemented within the framework defined by the NMF package (Gaujoux et
al. 2010), some purely in R, others using optimised C++ routines, with the exception of DSection,
whose original Matlab code33 was slightly adapted to make it compatible with Octave and is run
through the RcppOctave package34 (Gaujoux 2011). Both the lsfit and csSAM algorithms are
implemented using the R-core function lsfit, which can fit standard least-squares with multiple
left-hand sides. The qprog algorithm implements the approach from Gong et al. (2011) using
the function lsei from the limSolve package35 (Soetaert et al. 2009; Van den Meersche et al.
2009), which solves least-squares problems with equality and inequality constraints as a quadratic
programming problem, using the algorithm from Haskell et al. (1981). Each global expression
profile is solved separately. Our implementation optionally allows for incomplete signatures, i.e.
for some constituents to be absent from the signatures, by allowing the sum of the estimated
proportions to be lower than 1 – rather than equal to 1 in the standard case. The ssKL and
ssFrobenius algorithms are modifications of NMF algorithms from Brunet et al. (2004) and Lee

30http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680378/bin/blood-2008-06-162958_TableS5.xls
31http://www.bioconductor.org/packages/release/data/annotation/html/illuminaHumanv2.db.html
32http://www.biomedcentral.com/content/supplementary/1471-2164-7-115-S2.xls
33http://www.cs.tut.fi/~erkkila2/software/dsection/DSection.m
34http://cran.r-project.org/package=RcppOctave
35http://cran.r-project.org/package=limSolve
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et al. (2001) respectively, as described in (Gaujoux et al. 2011). The deconf algorithm uses the
original implementation found in the deconf package36 from Repsilber et al. (2010).

4 Discussion

The use case examples shown in this vignette demonstrate that the CellMix package provides a
powerful flexible computational framework for gene expression deconvolution applications, whether
one wants to simply estimate proportions and/or cell specific signatures from particular gene ex-
pression data, apply a specific method, or develop new methodologies. The internal registries
offer an easy and managed access to several marker gene lists and real benchmark datasets that
contain reference ground truth proportions and/or signatures, which greatly facilitates method
comparisons and data integration from multiple sources. The unified interface for running decon-
volution algorithms, combined with the automatic method selection, simplifies and improves the
user experience, especially for non-advanced users. Moreover, the data structure we developed
for storing marker gene lists, comes with a set of utility functions that help in the creation and
manipulation of such data. In this section we discuss some possible improvements and challenges
that remain to be addressed.

4.0.1 Interface & data

More advanced capabilities for comparing, combining and visualising the content of marker gene
lists would be useful. Working towards the easy integration of multiple lists would help building
more complete and robust lists. With respect to the implementation of these functionalities, the
functions already available for the marker list data structures should provide a good base to build
on. Existing strategies for handling multiple lists of genes produced by differential expression
analysis should also be considered (Lottaz et al. 2006; Yang et al. 2007).

It is also desirable that more datasets and marker lists are included in the package, as they
become available. For immune cells in particular, primarily focus would be on integrating data from
some of the specialised databases the listed in Gardy et al. (2009) – of which we became aware
only recently. A potential fruitful enhancement would be to enable the direct interaction with
those databases that provide a programmatic interface, in a similar way the GEOquery package,
ArrayExpress package or biomaRt package37 (Durinck et al. 2009) do with their respective online
databases.

4.0.2 Deconvolution basis matrices

Given the good results achieved by the partial deconvolution approach from Abbas et al. (2009),
it would be interesting to build deconvolution basis matrices for other types of cells, tissues and
organisms. This could be implemented as a generic pipeline run on extractions of the constantly
growing compendium of public datasets available, and assessed based on studies where cell/tissue
proportions are known. More generally, investigating methodologies to select and optimise the set
of genes/probesets that compose such deconvolution basis matrices is of prime interest, so as to
further increase the estimation accuracy.

With respect to this, the approach based on the condition number of the deconvolution basis
matrix used by Abbas et al. deserves some attention. In general optimisation theory, the condition
number is a notion associated with any optimisation problem, that measures the sensitivity of the
solution(s) with respect to the data, and is related to numerical stability of computed solutions and
backward error estimation (Bertsekas 1999; Higham 1996). Essentially, the smaller the condition
number, the more the solution computed by a given algorithm is likely to be robust to variations in
the data, although strictly speaking the sensitivity to variations is intrinsically dependent on the
algebraic and optimisation techniques used by the algorithm. In particular, the condition number

36http://www.biomedcentral.com/content/supplementary/1471-2105-11-27-s1.zip
37http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html
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of least-square problems is proportional to the condition number of the coefficient matrix (Grcar
2003), i.e. the deconvolution basis matrix in the case of partial deconvolution. This explains the
correlation between accuracy and condition number observed by Abbas et al. Indeed, they built the
different basis matrices using expression data from pure samples. Due to measurement errors and
cell interactions (Cobb et al. 2005; Palmer et al. 2006; Patocs et al. 2007), global gene expression
profiles from mixed samples deviate from the theoretical expression profiles, which consist of the
exact mixture of the pure profiles (i.e. the columns of the basis matrix). Being associated with
better conditioned optimisation problems, matrices with smaller condition numbers are therefore
expected to estimate proportions that are closer to the actual proportions.

4.0.3 Data-driven optimisation of marker gene lists

When pure samples are available in an experiment, the consistency of a given list of marker
genes may be assessed by comparing the markers’ expression profiles with the expectation of block
expression patterns. Bar charts such as in Figure 10 or heatmaps such as in Figure 12 help pin-
point inconsistencies. Quantitative measures would however be useful in this context, so that the
consistency of each marker can be computed, and used to automatically select good markers. Dif-
ferential expression statistics used to define markers can typically be used as consistency measures,
although the usually small number of pure samples from each cell type might suggest the use of
heuristic scoring schemas.

However, a use case where marker gene lists are most needed is when the considered experiment
contains no data from pure samples. One would therefore want to be able to refine a given marker
gene list, so that it is consistent with the expression data of the mixed samples. Note that this
would in fact be applicable and relevant even when pure samples are available.

Very recently, Schneider et al. (2011) proposed a statistical test based on Kendall’s W coefficient
of concordance to identify concordant redundant probesets in expression microarray data. Their
approach, named Statistical Consolidation of Redundant Expression Measures (SCOREM), is
based on the observation that groups of probesets annotated as representing the same gene may
have discordant expression profiles, due to cross-hybridisation, misannotation or alternate-splicing.
Traditional approaches use either one or all of these multiple probesets-per-gene to compute a
single representative expression value for each gene, e.g. based on their individual variations or
their connectivity in co-expression networks (Miller et al. 2011). The actual expression data from
many probesets are therefore not fully used, which lowers the power of detection of biologically
meaningful expression patterns. By grouping these probesets into sub-groups whose expression
profiles are highly consistent, SCOREM provides clearer biologically relevant signals, enhancing
the results of downstream analysis. One interesting aspect of this approach is that it is dataset
specific, considering each probeset in the context of its expression profiles in the given experimental
conditions, rather than assuming globally applicable expression patterns, from which are derived
generic annotation files.

Drawing a parallel between groups of probesets used to represent the same gene, and groups
of marker genes used to represent the same cell or tissue type, the SCOREM approach could be
used to extract from a marker gene list the most suitable sub-groups of candidate markers for
the deconvolution of a particular dataset. Indeed, regardless of the phenotypic characteristics of
mixed samples present in the dataset (e.g. case/controls, tumour/normal), good marker genes in
each cell/tissue type should have concordant expression profiles, being presumably well correlated
with the cell/tissue relative proportion. Given a list of marker genes and expression data from
mixed samples only (e.g. clinical blood samples), applying the SCOREM algorithm to each set
of markers present in the dataset, and choosing the most concordant or biggest sub-group would
create a (sub)list of markers optimised for that specific dataset.

This strategy could prove to be very beneficial to deconvolution methods that make use of
markers (Gaujoux et al. 2011; Repsilber et al. 2010), while other methods may achieve greater
accuracy if applied on the global expression data of the subset of highly consistent markers only.
Another interesting potential advantage is that this could solve altogether the issue of non-unique
probe mapping when converting marker lists across platforms or organisms. One would simply
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perform this data-driven filtering directly on the list of all mapped probes (e.g. by Entrez IDs)
within their respective cell-types. This is similar in essence to the approach used by Miller et al.
(2011) for meta-analysis and cell proportion estimation, with the difference that one would search
for multiple rather than single representative probesets. The approach may also be used to assess
the consistency of estimated cell type-specific signatures. Future work will include evaluating
and validating this approach, and eventually integrating it with the other tools provided by the
CellMix package38.

5 Conclusion

We developed the CellMix package, a general framework for gene expression deconvolution,
which provides an easy access to benchmark data, marker gene lists and a variety of deconvolution
methods. This package dramatically facilitates deconvolution analysis, by addressing the common
practical issues that arise when performing such analysis. Overall, it allows for smoother and more
generic analysis pipelines – as well as a friendlier user experience.

The CellMix package is currently in alpha version and available on our CRAN-like repository
http://web.cbio.uct.ac.za/~renaud/CRAN, from which it can be installed as a source package
using the standard procedure. We will eventually submit the package to Bioconductor39 (Gentle-
man et al. 2004), where it should reach and benefit the wider bioinformatics research community.

38A first experimental implementation of the SCOREM approach applied to marker gene filtering is already
available in CellMix

39http://www.bioconductor.org
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Figure 14: Hematopoietic tree. Schematic representation of the main lineages of blood cells. The mul-
tipotential hematopoietic stem cell (Hemmocytoblast), differentiates into the common lymphoid progenitor
(CLP) and common myeloid progenitor (CMP), from which arise the lymphoid and myeloid lineages re-
spectively. CLPs are progenitors for all lymphocytes, further differentiating into Natural killer cells (NK),
and B and T cells respectively. CMPs give rise to megakaryocytes (MK) and erythroblasts (EB) , that
are progenitors for thrombocytes (platelets) and erythrocytes (red cells) respectively, and to myeloblasts
that are progenitors for granulocytes and monocytes. Monocytes differentiate in tissues into macrophages
and dendritic cells (DC). Some B cells differentiate on activation into plasma cells, i.e. effector B cells,
that produce large amount of pathogen-specific antibodies, which scale up immune response and target
pathogens (Ferreira et al. 2005; Janeway et al. 2001). Cell types that are underlined in red are those for
which proportions are available in CBC data.

40http://commons.wikimedia.org/wiki/File:Hematopoiesis_simple.svg published under the terms of the GNU
Free Documentation License.
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C Marker composition

# For Human (Homo Sapiens)
(([hs_tissue_distribution-TissueType:*] & [hs_tissue_distribution-TissueLevel#5:5])
& [hs_tissue_distribution-TissueRank#1:1])

# For Rat (Rattus Norvegicus)
(([rn_tissue_distribution-TissueType:*] & [rn_tissue_distribution-TissueLevel#5:5])
& [rn_tissue_distribution-TissueRank#1:1])

Figure 15: Queries used to extract the most tissue-specific UniGene EST clusters in Human and Rat
from the TissueDistributionDB database. We selected only the EST clusters that ranked first in terms of
tissue-specific expression (Rank 1) in the tissues defined by the more detailed tissue classification (Level
5).

D Marker IDs conversion pipeline

# load data from registry
m <- MarkerList("HaemAtlas")
e <- ExpressionMix("GSE11058")

# convert Affy IDs from HGU133A/B to HGUplus2 (showing details of the
# mapping process)
m_affy_all <- convertIDs(m, e, verbose = 4)

## # Converting 2069 markers from Annotation (illuminaHumanv2.db) to Annotation (hgu133plus2.db) ...
## # Converting from Annotation (illuminaHumanv2.db) to Annotation (hgu133plus2.db) ...
## # Limiting query to Annotation (illuminaHumanv2.db) ... [2069 -> 2069 id(s)]
## # Loading map(s) from Annotation (illuminaHumanv2.db) to Annotation (hgu133plus2.db) [x-platform /x-probe id] ... OK [2 step(s)]
## # Mapping from Annotation (illuminaHumanv2.db) to EntrezId (illuminaHumanv2.db) [49481 entries] ... [1803/2069 mapped (1:1)]
## # Applying filtering strategy ✬auto✬ ... [1803/1803 passed (1:1)]
## # Mapping from EntrezId (hgu133plus2.db) to Annotation (hgu133plus2.db) [43827 entries] ... [1720/1803 mapped (1:1-14 = 4122)]
## # Applying filtering strategy ✬auto✬ ... (kept 1684 2nd-affy probes) (trunking 1077 maps to 1:1) [1720/1720 passed (1:1)]
## OK [1720/2069 mapped (1:1)]
## OK [1720/2069 (1:1)]
## # Processing 2069 markers from Annotation (illuminaHumanv2.db) to Annotation (hgu133plus2.db) ...
## ** Processing ids for ✬B-CD19✬ ...
## # Removing duplicated id(s) ... OK [dropped 11/186 id(s)]
## OK [175/247 (1:1)]
## ** Processing ids for ✬Erythroblast✬ ...
## # Removing duplicated id(s) ... OK [dropped 11/288 id(s)]
## OK [277/322 (1:1)]
## ** Processing ids for ✬Granulocyte-CD66b✬ ...
## # Removing duplicated id(s) ... OK [dropped 32/694 id(s)]
## OK [662/878 (1:1)]
## ** Processing ids for ✬Megakaryocyte✬ ...
## # Removing duplicated id(s) ... OK [dropped 8/256 id(s)]
## OK [248/279 (1:1)]
## ** Processing ids for ✬Monocyte-CD14✬ ...
## # Removing duplicated id(s) ... OK [dropped 7/187 id(s)]
## OK [180/205 (1:1)]
## ** Processing ids for ✬NK-CD56✬ ...
## # Removing duplicated id(s) ... OK [dropped 3/63 id(s)]
## OK [60/82 (1:1)]
## ** Processing ids for ✬T-CD4✬ ...
## # Removing duplicated id(s) ... OK [dropped 1/42 id(s)]
## OK [41/51 (1:1)]
## ** Processing ids for ✬T-CD8✬ ... OK [4/5 (1:1)]
## # Checking for duplicated marker(s) across cell-types ... OK [dropped 4/1647]
## OK [1643/2069 (1:1)]

Figure 16: Sample code for converting the HaemAtlas marker list defined by Watkins et al. (2009),
from Illumina HumanWG6v2 probe identifiers to Affymetrix HG U133 Plus 2.0 probeset ids. This code
is identical to the one shown in Figure 8, but uses verbose output, that shows more details on how the
mapping is performed.
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E Effect of scaling and normalization method

# Quantile normalized - Log-scale

res <- gedBlood(e)
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# Quantile normalized - Linear scale

res <- gedBlood(expb(e, 2))
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# Log-transformed only

res <- gedBlood(e, normalize = FALSE)
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# Linear scale

res <- gedBlood(expb(e, 2), normalize = FALSE)
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Figure 17: Computed proportions vs. Actual CBC proportions of lymphocytes, monocytes and neutrophils
for dataset GSE20300. The deconvolution is performed using the qprog algorithm in combination with the
basis signature matrix from Abbas et al. (2009). Computed proportions are obtained from the aggregation
of proportions of the detailed subset of immune cells into their respective category.
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F Assessing marker expressions in pure samples
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Figure 18: Expression values of all the marker genes of each cell type in the list from HaemAtlas (Watkins
et al. 2009), ordered by decreasing uniform expression in each immune cell line from dataset GSE11058.
This figure is the full version of Figure 10, where only the top 50 markers of each cell type were shown.
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